

Turtle Module for TI-84 Plus CE Python

Getting Started Guide

© Texas Instruments 2021 Page 1 of 18

Note: the following sections assume that you have updated your TI-84 Plus CE Python to version 5.7 OS and Apps or

later. If you have not updated to version 5.7 or later, please visit https://education.ti.com/en/product-resources/whats-

new-84-ce. Be sure to back up or archive files and data on your TI-84 Plus CE Python prior to updating to version 5.7 or

later.

Transfer the Turtle Module to Your Calculator and (if used) TI-SmartView Software

1) Transfer the Turtle module and Grid files to your

TI-84 Plus CE Python calculator(s)

After downloading the Zip and extracting files:

• Open your TI Connect CE desktop software

• Connect your TI-84 Plus CE Python calculator(s) to

your computer using the computer-to-calculator

USB cable that comes with the calculator.

• Verify that your connected calculator appears in the

Connected Calculators panel in the Calculator

Explorer workspace.

• Transfer the TURTLE.8xv and GRID.8xv files to

the connected calculator(s) by dragging the files

into the Connected Calculators window.

Note: the GRID.8xv file is an image used as a grid

background in Turtle programs.

Note: The Turtle and Grid files may alternately be

transferred from calculator to calculator through a unit-

to-unit USB cable linking process. See your calculator

guidebook for the calculator-to-calculator file transfer

process.

• Next, go to step 3) Import the Turtle module

This step requires use of (free) TI Connect CE desktop

software for PC or Mac

https://education.ti.com/en/products/computer-software/ti-connect-ce-sw

https://education.ti.com/en/product-resources/whats-new-84-ce
https://education.ti.com/en/product-resources/whats-new-84-ce
https://education.ti.com/en/products/computer-software/ti-connect-ce-sw

Turtle Module for TI-84 Plus CE Python

Getting Started Guide

© Texas Instruments 2021 Page 2 of 18

2) Transfer the Turtle module and Grid files to your TI-

SmartView desktop software (PC or Mac)

This step is for individuals who use TI-SmartView CE

desktop software for TI-84 Plus family products.

After downloading the Zip and extracting files:

• Drag and drop the TURTLE.8xv and GRID.8xv

files into the Emulator Explorer workspace of your

TI-SmartView CE desktop software.

• Return to the Emulator workspace

• Next, go to step 3) Import the Turtle module

TI-SmartView CE desktop software is a desktop software

application for PC and Mac that emulates TI-84 Plus family

products.

https://education.ti.com/en/products/computer-software/ti-smartview-ce-for-84

Note: at the time of Turtle module release, OS/App version 5.7 was not available for implementation on TI-SmartView

CE for the TI-84 Plus Family. See note in section 3 regarding visibility of the [Add-on] tab and an alternative method to

import the Turtle module by hand-typing the import statement.

https://education.ti.com/en/products/computer-software/ti-smartview-ce-for-84

Turtle Module for TI-84 Plus CE Python

Getting Started Guide

© Texas Instruments 2021 Page 3 of 18

3) Import the Turtle module

Once the Turtle module and Grid files are transferred,

create a Python program and import the Turtle module

in order to access the Turtle module menu selections.

• On your TI-84 Plus CE Python calculator (or

emulator), open the Python App. It can be found

under the [prgm] key or the [apps] key. The

Python App will open to a File Manager screen.

• Create a new Python program by selecting the tab

labeled New (press the [zoom] key)

• Give the Python program a name (example:

SQUARE), then select Ok

You are now in a Python program Editor screen.

Next, enter a Turtle import statement and Turtle

object.

• Select the [Fns…] tab (at the bottom of the screen)

and arrow (left or right) to the Modul tab (at the top

of the screen).

• At the bottom of the screen select the [Add-on] tab.

• Select option 4:from turtle import * to paste the

Turtle module import statement. Notice that it also

pastes a constructor t=Turtle() to assign t as the

turtle object.

• Return to the Modul tab and notice the appearance

of the 8:turtle… menu selection.

Note: the [Add-On] tab is visible only with OS version

5.7 or later. If you are using a prior OS version, update

to version 5.7 or later; otherwise you may hand-type

the import statement and t=Turtle() constructor.

At this point you are ready to access the Turtle module

menu selections and write a Turtle program!

• Proceed to the next section: Creating your First

Turtle Program: Let’s Draw a Square

Turtle Module for TI-84 Plus CE Python

Getting Started Guide

© Texas Instruments 2021 Page 4 of 18

Creating Your First Turtle Program: Let’s Draw a Square

1) Enter a loop statement

Continuing from the prior section (in the Editor screen)

• Press [enter] to go to the next line.

• Select the [Fns…] tab (press the [y=] key) then

right arrow to highlight the Ctl tab.

• Arrow down to selection 4:for i in range(size):

• Press [enter] to paste it into the Editor

Note that the cursor is blinking inside the parentheses

and that an automatic indent is inserted under the “for”

loop statement.

• Enter a value of 4 in the parenthesis. This

determines the number of cycles in the “for” loop

that is defined with index i.

2) Enter a statement to move the turtle forward

• Arrow down to the indented line.

• Select the [Fns…] tab (at the bottom of the screen)

and arrow (left or right) to the Modul tab (at the top

of the screen).

• Arrow up (or down) to selection 8:turtle… and

press [enter] to see the Turtle module menu

selections.

Notice the menu tabs and menu selections in the

Turtle module. We will start by selecting a method

to move the turtle forward.

• Under the Move tab with the cursor on selection

1:t.forward(distance), press [enter].

• Enter a value of 100 in the parentheses. This is the

number of pixels to move forward.

Turtle Module for TI-84 Plus CE Python

Getting Started Guide

© Texas Instruments 2021 Page 5 of 18

3) Enter the direction and angle to turn

• At the end of the t.forward(100) line, press [enter]

to create a new indent line.

(Alternately press [2nd] [enter] to jump to a new line)

• Select the [Fns…] tab (at the bottom of the screen)

and then arrow (left or right) to the Modul tab (at

the top of the screen).

• Arrow up (or down) to selection 8:turtle… and

press [enter] to see the Turtle module menu

selections.

• Under the Move tab with the cursor on selection

4:t.left(degrees), press [enter].

• Enter the angle in degrees you want the turtle to

turn left. For a square, we will enter 90 degrees.

4) Enter a “done” statement at the end of the program

This makes the Turtle drawing stay on your screen

when it is complete.

• At the end of the t.left((90) line, press [enter] to

create a new line.

• Remove the indent by pressing the [del] key twice.

(Alternately, select the [Tools] menu, then

selection 2:Indent .)

• Return to the Turtle module menu as before.

• Under the Move tab with the cursor on selection

6:t.done(), press [enter].

You are ready to run your first Turtle program!

Turtle Module for TI-84 Plus CE Python

Getting Started Guide

© Texas Instruments 2021 Page 6 of 18

5) Run your Turtle program

Simply press the [Run] selection at the bottom of the

screen (by pressing the [trace] key).

By default, the turtle is visible and you see it draw.

Also notice that the Grid is visible by default. (The Grid

scale is 25 pixels per Grid square).

When you finish admiring your work, press the [clear]

key to clear the screen. Notice that you will be on a

Python Shell screen. This is where your python

program was processed.

Return to the Editor by pressing the [Editor] selection

at the bottom of the screen.

From here, modify your program and run it again!

Challenges:

• Change the pen thickness

• Change the pen color

• Hide the turtle icon

• Change the speed at which the turtle moves

• Hide the grid and scale indicator

• Fill the square

Turtle Module for TI-84 Plus CE Python

Getting Started Guide

© Texas Instruments 2021 Page 7 of 18

Turtle Module Methods

Every effort has been made to align with syntax and associated

behaviors of the Python API (Application Programming

Interface) for Turtle Graphics found on the Python

documentation website. While there may be slight behaviorial

and syntax differences in implementation, please visit this site

to familiarize with syntax definitions and turtle behaviors.

https://docs.python.org/3.3/library/turtle.html?highlight=turtle

Please see the Default Settings and Known Exceptions section

for an overview of notes and known exceptions.

Module menu selections

These are the menu tabs at the top of the Turtle module screen

• Move

• Draw

• Pen

• Settings

• State

Move

• t.forward(distance) – specifies the forward direction and

distance in pixels

• t.backward(distance) - specifies the backward direction

and distance in pixels

• t.right(angle) – specifies turning right and the angle in

degrees.

• t.left(angle) – specifies turning left and the angle in

degrees.

• t.goto(x,y) – specifies (x,y) coordinates for turtle to move to.

• t.done() – used at the end of the program to display the

resulting turtle drawing.

The Turtle coordinate system is oriented with (0,0) at the center

of the screen.

https://docs.python.org/3.3/library/turtle.html?highlight=turtle

Turtle Module for TI-84 Plus CE Python

Getting Started Guide

© Texas Instruments 2021 Page 8 of 18

Draw

• t.fillcolor(r,g,b) – specifies a fill color. RGB: r,g,b are the

red, green, and blue arguments for fill color, each with a

value in the range of 0 through 255.

• t.begin_fill() – establishes when the fill method begins.

• t.end_fill() – establishes when the fill method ends.

• t.circle(radius) – draws a circle with specified radius.

Circle center is one radius to the left of the turtle.

• t.dot(diameter) – draws a dot with specified diameter.

Applies the color specified with t.pencolor(). Default black.

• t.write(‘text’) – writes text specified in the ‘text’ string.

Pen

• t.penup() – enables turtle to move without drawing a line

• t.pendown() – used after t.pendow(), enabling turtle to draw

a line

• t.pencolor(r,g,b) – specifies pen color. RGB: r,g,b are the

red, green, and blue arguments for fill color, each with a

value in the range of 0 through 255.

• t.pensize(1-4) – changes the pen size. Four pen sizes; 1

through 4. Default value of 1 when t.pensize() is not

specified.

Settings

• t.clear() – clears lines that have been drawn.

• t.hideturtle() – makes the turtle invisible.

• t.showturtle() – makes the turtle visible.

• t.hidegrid() – hides the grid.

• t.speed(0-10) – specifies eleven turtle speeds ranging from

1 (slow) to 10 (fast). Speed zero (0) is the fastest setting.

Default value of 5 when t.speed() is not spedified.

Turtle Module for TI-84 Plus CE Python

Getting Started Guide

© Texas Instruments 2021 Page 9 of 18

State

• t.home() – move turtle to the origin (0,0) and sets its

heading to its start orientation of zero (pointing to the right).

• t.setheading(degrees) – sets turtle heading in degrees.

Positive values are counter-clockwise starting from zero

heading. Negative values are clockwise.

• var=t.xcor() – Return the turtle’s x coordinate.

• var=t.ycor() – Returns the turtle’s y coordinate.

• var=t.pos() – Return the turtle’s current location (x,y).

• var=t.heading() – Return the turtle’s current heading.

• module version 2.0.0 – the Turtle module version number.

Turtle Module for TI-84 Plus CE Python

Getting Started Guide

© Texas Instruments 2021 Page 10 of 18

Default Settings and Exceptions

When these methods are not specified programatically, the following defaults are applied

Turtle Default on. Use t.hideturtle() to hide the turtle icon.

Grid Default on. Use t.hidegrid() to hide the grid.

Grid scale is 25 pixels per grid square

Speed Defaults setting is 5 when no speed is specified.

Use t.speed() to change the speed. Valid arguments are 0 to 10.

While values 1 through 10 range from slow to fast, t.speed(0) is the fastest (in accordance with

the Turtle Graphics API).

Pen Default pen size 1. To adjust the pen size, use t.pensize() with valid arguments 1, 2, 3, and 4.

Default pen color is black. Use t.pencolor(r,g,b) to change pen color. RGB (Red, Green, Blue)

values are valid arguments for pen color with values in the range of 0 through 255 for each color

variable.

Default pen down. To move the turtle to a location without drawing a line, use the t.penup()

method. The t.pendow() method will subsequently need to be applied to continue drawing.

Fill Default color is black. Use t.fillcolor(r,g,b) to specify other colors. RGB (Red, Green, Blue) values

are valid arguments for fill color with values in the range of 0 through 255. Alternately, populate

the t.fillcolor(color) argument with selections from the Color menu.

Exceptions

Due to Python processor memory size limitations you may experience memory errors with large programs or programs

that are processor intensive. If this occurs, try the following

a) import only the needed functions from a module; for example, from random import randint (which imports

only the randint function) instead of from random import * (which imports all functions in the module).

b) Adjust the range of values used in an argument; for example, t.fillcolor(randint(150,255),0,0) instead of

t.fillcolor(randint(0,255), randint(0,255), randint(0,255))

c) Eliminate portions of the program that may consume excessive memory. In Example 4 (below) we remove Fill

methods from the program.

Turtle Module for TI-84 Plus CE Python

Getting Started Guide

© Texas Instruments 2021 Page 11 of 18

Example Programs:

Example 1: My First Star

Draw a single star. The star is drawn with a random line color

and filled with a random color.

Notice that t.pencolor() is defined with R,G,B values (Red,

Green, Blue), with values in the range of 0 to 255.

from random import *

from turtle import *

t=Turtle()

t.pensize(2)

t.penup()

t.goto(-90,16)

t.pendown()

t.pencolor(randint(0,255),randint(0,255),randint(0,255))

t.fillcolor(randint(0,255),randint(0,255),randint(0,255))

t.begin_fill()

while True:

 t.forward(180)

 t.right(160)

 if t.heading() < 1:

 break

t.end_fill()

t.done()

Note: The break function is found in the [catalog] menu. Press

[2nd] [catalog] and scroll to the selection for break. True is

found under the Ops menu tab.

Example file name: STAR1

Challenges:

• Change the t.right() angle to create stars with a

different number of points. What happns when

the angle is small. Large.

• Change the t.forward() distance for smaller and

larger stars.

Turtle Module for TI-84 Plus CE Python

Getting Started Guide

© Texas Instruments 2021 Page 12 of 18

Example 2: PhiX 177 Super Nova

Build on the prior program by automatically re-generating a new

star every one and one half second until you press [clear]

from time import *

from random import *

from turtle import *

t=Turtle()

t.hideturtle()

t.pensize(2)

t.speed(10)

while not escape():

 t.penup()

 t.goto(-90,16)

 t.pendown()

 t.pencolor(randint(0,255),randint(0,255),randint(0,255))

 t.fillcolor(randint(0,255),randint(0,255),randint(0,255))

 t.begin_fill()

 while True:

 t.forward(180)

 t.right(160)

 h=t.heading()

 if h<1:

 break

 t.end_fill()

 sleep(1.5)

t.done()

Note: The time module is imported so that the sleep() function

can be used to pause each star for a moment before the next is

drawn.

Note: The while not escape(): function is found under the

ti_system… module menu. When using the Turtle module, it is

not necessary to import the ti_system module in order to use the

while not escape(): function. Use of other functions in the

ti_system menu will require import of the ti_system module.

Example file name: STAR2

Turtle Module for TI-84 Plus CE Python

Getting Started Guide

© Texas Instruments 2021 Page 13 of 18

Example 3: Zinnias in the Summer

Build on the prior programs and randomize the position of stars

on the screen.

from random import randint

from turtle import *

t=Turtle()

t.pensize(1)

t.hideturtle()

t.speed(0)

while not escape():

 t.penup()

 t.goto(randint(-200,120), randint(-100,100))

 t.pendown()

 t.pencolor(randint(0,255),randint(0,255),randint(0,255))

 t.fillcolor(randint(0,255),randint(0,255),randint(0,255))

 t.begin_fill()

 while True:

 t.forward(80)

 t.left(162)

 h=t.heading()

 if h<1:

 break

 t.end_fill()

 t.done()

Example file name: STAR3

Challenges:

• Instead of stars, draw squares or rectangles

o Randomize the size of the squares

o Randomize the height and width of the

rectangles

• Adjust the pen and fill colors so they are shade

variations of the same color

Tip: When building on an existing program it may be convenient to make a copy of the existing program, then modify the

code. This may be accomplished from the File Manger by 1) selecting the program to copy (in this example, STAR2),

then 2) selecting the [Manage] tab, then 3) selecting option 1:Replicate Program… and 4) entering the name for a new

program (in this example, STAR3).

Turtle Module for TI-84 Plus CE Python

Getting Started Guide

© Texas Instruments 2021 Page 14 of 18

Example 4: Grandma’s Quilt

Builds on the prior programs but lays the stars out in an orderly

“quilt” pattern.

from random import randint

from turtle import *

t=Turtle()

t.hideturtle()

t.hidegrid()

t.speed(0)

for j in range(112,-150,-84):

 for i in range(-169,170,86):

 t.penup()

 t.goto(i, j)

 t.pendown()

 t.pencolor(randint(0,255),randint(0,255),randint(0,255))

 while True:

 t.forward(80)

 t.left(140)

 h=t.heading()

 if h<1:

 break

t.done()

Example file name: STAR4

Challenges:

• Adjust the quilt pattern so that stars overlap

vertically and horizontally.

• Change the number of points on the star.

• Draw circles or squares instead of stars.

Note: Notice in this example we do not use a Fill method. This is because the Python processor on TI-84 Plus CE Python

has limited memory. If a program exceeds the available memory in the Python processor, a Memory Error may occur, as

illustrated below when a Fill method is used in Example 4. If a Memory Error occurs, modify your program to optimize

(minimize) the program size. In this instance we removed the Fill methods. In other instances, it may involve importing

only the functions in a module that are needed such as from random import randint (which imports only the randint

function) instead of from random import * (which imports all functions in the module).

Turtle Module for TI-84 Plus CE Python

Getting Started Guide

© Texas Instruments 2021 Page 15 of 18

Example 5: Stained Glass

Build a series of squares inside of squares.

from random import randint

from ti_system import escape

from math import sqrt

from time import sleep

from turtle import *

t=Turtle()

t.speed(0)

t.pensize(3)

t.hideturtle()

while not escape():

 d=200

 t.penup()

 t.goto(-d/2,-d/2)

 t.setheading(0)

 t.pendown()

 for i in range(8):

 t.fillcolor(randint(0,255),randint(0,255),randint(0,255))

 t.begin_fill()

 for j in range(4):

 t.forward(d)

 t.left(90)

 t.end_fill()

 t.penup()

 t.forward(d/2)

 t.left(45)

 t.pendown()

 d=sqrt((d**2)+(d**2))/2

 sleep(1.5)

t.done()

Example file name: SQRLOOP

Challenges:

• Decrease or increase the number of squares

drawn.

• Change the orientation angle of squares that are

draw.

• Create a “tile floor” with smaller tiles that look

like the original.

Turtle Module for TI-84 Plus CE Python

Getting Started Guide

© Texas Instruments 2021 Page 16 of 18

Example 6: Threadbare

Deploy a familiar loop strategy and draw a random array of

rectangles. It continues until you press [clear].

from random import randint

from ti_system import escape

from turtle import *

t=Turtle()

t.hidegrid()

t.hideturtle()

t.speed(0)

while not escape():

 t.penup()

 t.goto(randint(-200,150), randint(-110,100))

 t.pendown()

 t.pencolor(randint(0,255), randint(0,255), randint(0,255))

 b=randint(5,60)

 h=randint(5,60)

 for i in range(2):

 t.forward(b)

 t.left(90)

 t.forward(h)

 t.left(90)

t.done()

Example file name: RANDREC

Challenges:

• Fill the rectangles.

• Make squares instead of rectangles.

• Adjust the size of the rectangles or squares.

• Adjust the color so it is more uniform; shades of

the same color.

Challenge: Write your own code to create these images

Example file name: SPLAT1

Example file name: SPLAT2

Turtle Module for TI-84 Plus CE Python

Getting Started Guide

© Texas Instruments 2021 Page 17 of 18

Example 7: Centroid

Build a triangle, midpoints, median

segments and centroid.

from turtle import *

t=Turtle()

t.speed(1)

t.hideturtle()

t.pensize(2)

calculate the midpoint of line

segment

def midpoint(pt1,pt2):

return ((pt1[0] + pt2[0])/2, (pt1[1] +

pt2[1])/2)

plot point

def plot_point(pt):

t.penup()

t.goto(pt)

t.pendown()

t.dot(10)

the triangle verticies

v1 = (25,75)

v2 = (-125,-75)

v3 = (100,-50)

calculate the centroid

centroid

=((v1[0]+v2[0]+v3[0])/3,(v1[1]+v2[1]+v3

[1])/3)

calculate the midpoints

mid_1_2 = midpoint(v1,v2)

mid_2_3 = midpoint(v2,v3)

mid_1_3 = midpoint(v1,v3)

draw the triangle in black

t.penup()

t.goto(v1)

t.pendown()

t.goto(v2)

t.goto(v3)

t.goto(v1)

draw the three median segments in

green

t.pencolor(0,255,0)

t.penup()

t.goto(mid_1_2)

t.pendown()

t.goto(v3)

t.penup()

t.goto(mid_2_3)

t.pendown()

t.goto(v1)

t.penup()

t.goto(mid_1_3)

t.pendown()

t.goto(v2)

draw the centroid in red

t.pencolor(255,0,0)

plot_point(centroid)

draw the midpoints in blue

t.pencolor(0,0,255)

plot_point(mid_1_2)

plot_point(mid_2_3)

plot_point(mid_1_3)

t.done()

Example file name: CENTROID

Challenges:

• Change the coordinates of one or

more vertex and observe the

result.

Turtle Module for TI-84 Plus CE Python

Getting Started Guide

© Texas Instruments 2021 Page 18 of 18

Example 8: Buffon's Needle

Simulate Buffon’s needle experiment to

estimate pi.

from ti_system import *

from random import *

use shell before entering turtle

environment

disp_clr()

length=int(input("Length of needle or

[enter] for 50 ? ") or '50')

spacing=int(input("Spacing among lines

or [enter] for 50 ? ") or '50')

needles=int(input("How many needles or

[enter] for 60 ? ") or '60')

the_pies=[]

the_count=[]

set up turtle environment

from turtle import *; t=Turtle()

t.hidegrid()

t.hideturtle()

t.pensize(2)

t.speed(0)

w,h=320,210

the_lines=[] # list of all x-coordinate of all

lines

n_lines=int((w/spacing)/2)+2 # number of

lines

crossing = 0 # needles crossing a line

estimate = 0 # calculated estimate of pi

draw all of the lines and append

the_lines

for x in range(-

n_lines*spacing,(n_lines+1)*spacing,spa

cing):

 the_lines.append(x)

 t.penup()

 t.goto(x,-h/2)

 t.pendown()

 t.goto(x,h/2)

draw the needles

for i in range(needles+1):

 x1=randint(0,w)-w//2

 y1=randint(0,h)-h//2

 angle=random()*360

 t.penup()

 t.goto(x1,y1)

 t.setheading(angle)

 t.forward(length)

 x2= t.xcor()

 y2= t.ycor()

 t.pencolor(255,0,0)

check if needle touches or crosses

a line

 for n in range(len(the_lines)):

 if((x1<=the_lines[n] and

x2>=the_lines[n]) or

(x2<=the_lines[n] and

x1>=the_lines[n])):

 t.pencolor(0,255,0)

 crossing+=1

 t.pendown()

 t.goto(x1,y1)

Buffon's formula

 try:

estimate=(2*length*i)/(crossing*spac

ing)

 except:

all fun and games until somone

divides by zero

 pass

 the_pies.append(estimate)

 the_count.append(i)

store_list("1",the_count)

store_list("2",the_pies)

error=(pi-estimate)*100/pi

sleep(2)

disp_at(7," Press [clear] to

continue","left")

disp_wait()

disp_clr()

print("Estimate of \n Pi =", estimate,"\n

Error =",error,"%\n")

print("Next, exit the Python App

and\ncreate a Stat Plot with L1 and L2

to see data, Zoom 9:StatPlot.")

print("\nPress [clear] to continue")

t.done()

Example file: BUFFON

Exit the Python App. Do a Stat Plot

with L1 and L2. ZoomStat and Trace.

Challenges:

• Run the simulation specifying

different needle lengths and

spacing between lines.

Note: Due to memory limitations you

may see Memory Errors, even with

the default input entries.

