TI-89 / TI-92 Plus Developer Guide

Beta Version .02

Important information

Texas Instruments makes no warranty, either expressed or implied, including but not
limited to any implied warranties of merchantability and fitness for a particular purpose,
regarding any programs or book materials and makes such materials available solely on
an “as-is” basis.

In no event shall Texas Instruments be liable to anyone for special, collateral, incidental,
or consequential damages in connection with or arising out of the purchase or use of
these materials, and the sole and exclusive liability of Texas Instruments, regardless of
the form of action, shall not exceed the purchase price of this product. Moreover, Texas
Instruments shall not be liable for any claim of any kind whatsoever against the use of
these materials by any other party.

The latest version of this Guide, along with all other up-to-date information for
developers, is available at www.ti.com/calc/developers/.

© 2000, 2001 Texas Instruments Incorporated

, TI-GRAPH LINK, and TI FLASH Studio are trademarks of Texas Instruments Incorporated.

Sierra C is a trademark of Sierra Systems.

Table of Contents

R [V0 0 Tox 1o) o PSPPI 1
1.1. PUrpoSe Of thiS GUIAE........uuiiii i 1
2 O g =T (=] g = Yo U | P 1
1.3. Conventions Used in thiS GUIAEccooooiiiiii i 3

2. The 68000 TI AMS Operating System OVerviEW..........ccceeeuvvruiineeeereeeinnnns 5

3. The TI-89 / T1-92 Plus Hardware OVEIVIEW.........cccevveuuieeieeiiineereeiiineeeennns 7
G TN I O VT o PR 7
G P2 Y/ [T g To] Y 1Y, = T o PP 8

T V=T (o] 1= o] = PP PUPPPR PP 9
3.3 ASIC rEQISTEIS ...ttt 11

4. User INterface OVEIVIEW.......cccuuuiiiiiiiiee ettt e e 15
g YV T T [0V £ 15
.2, IMIBINUS ...ttt e et e et e e e et e e e e e e e e e e e e nra e e e eraanns 16

N N oo | o T- 1 £ F PP P PP PPPPPPPP 17
4.2.2. POPUPS oottt e e e e et e e e e e et r e r e rnnnrnne 17
4.2.2.1. STALIC POP-UPS ..evtteiieiiiiiie ittt 17

4.2.2.2. DYNAMIC POP-UPS ...ttt e et e e e e e e e e e e aennees 18

4.2.2.3. Dynamic Pop-ups with Menu Features..........cccceevviiiviiiiiiiiiiiiiee e 18

VG T B 1 =1 [T I =T)t SRR 18
o 0] 01 PP UPPRR PRI 19
A.5. THE STALUS LINE c.eeiiiiiiiii e e et e e e e e e e e e eeaeanneaaeeeeeeeenes 22

5. Flash Applications vs. ASM Programscceuuuiiinieeeeieiiiiinneeeeseeennnnnnns 23

6. Assembly Language Programming OVEIVIEWccoevvvvvviiiiieeereeeenennns 25
6.1. What are ASM ProgramiS?cceuuuiiiiei et e e e e e e e 25
6.2. HArdware STACK..........ooooiiiiiii 25
ORI S L= To | K51 (=T G FST= Vo [25
6.4. Calling Flash-ROM-Resident ROULINEScccoovviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee 26

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

ji Table of Contents

6.5. SUDIOULING LINKAGEcooiiiiiiiiiieee e 27
6.6. Sample ASM Program ... 29
7. Flash Application LayOULcccuuuiiiiiiiiiii e 31
7.1 File FOrMAL ... 31
A R R =] I == T [PP PRPPP TR 31
7.1.2. Certificate HEAETccoo i e e e e e e e e e e 32
7.1.3. APPlICAtION HEAUEK ... e a e e e e e 33
7.1.3.1. MAGIC NUMDET ...eiiiiiiiiiieeee ettt e s 33

7.1.3.2. Internal Application NAMEcceviiiiiiiiiiiiccer e 33

7033 FIAOS oo 34

7.1.3.4. Length of Data SegmeNt............uuviiiiiiiiieeeiecciiiieeeee e 34

7.1.3.5. Byte Offset to Code SEgMENT..........uvviiiiiiiiiiiiiiie e e e e e 34

7.1.3.6. Byte Offset to Initial Data Table ... 34

7.1.3.7. Length of Initial Data Table..............uvviiiiiiiiiiiii e, 35

7.1.3.8. OptioN@l HEAUEToeiiiiieiieii e 35

7.1.4. REIOCAION IMAP. ... uiiiiiee i e a e e aaaaaaas 35
7.1.5. APPLICAION COUE ..ottt e e e e e 35
7.1.6. Initial Data TabIe........ccooi i 35

A R S (o[g = (0 = PP PP PP PPPPPP 36
7.2, Layout IN MEMIOIY ..o 36
7.3, SOUICE LAYOUL ..ottt e e e e e e e e e 38
7.3.1. Interactive APPlICAtIONS..........cooi i 38

7.3 1.1 FRAME ...ttt ettt e et eenae e e enees 39

7.3.1.2. POINtEr t0 FRAMEcci ittt 40

7.3.1.3. Object Frame AINDULES...........uuuiiiiiiiieee e 40

7.3.1.3.1. Attribute OO_APP_FLAGS (0X1).....uuuuutrrriiiieiiieiaaaaeaaa e 40

7.3.1.3.2. Attribute OO_APP_NAME (0X2)ceoveueiirieeeiesienieneaiesieneeeseeseeesne s 41

7.3.1.3.3. Attribute OO_APP_TOK_NAME (0X3)...uuuttieeeiiiiiaaaaeaaeeeieaiiiieeeeeeeee 41

7.3.1.3.4. Method OO_APP_PROCESS_EVENT (0X4)cooeeeeeeeeeeeeeeeeeeeeens 41

7.3.1.3.5. Attribute OO_APP_DEFAULT_MENU (0X5) ..cccvviviiiiiiiiiiiiiiiiieeee 42

7.3.1.3.6. Attribute OO_APP_DEFAULT_MENU_HANDLE (0X6)........ccocvev....... 42

7.3.1.3.7. Attribute OO_APP_EXT_COUNT (OX7).etreeeeeeieeiaaaaeaaeaeieeiiiieeiieeeeen 42

7.3.1.3.8. Attribute OO_APP_EXTENSIONS (0X8)c.vveveeeeeeeeeeeeeeeeeeeeneeeene 42

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Table of Contents fii

7.3.1.3.9. Attribute OO_APP_EXT_ENTRIES (0X9).....vvueveveeeereeeeeereeeeeseeneeennns 42

7.3.1.3.10. Method OO _APP_LOCALIZE (OXA)voveeeeeeeeeeeeeeeeeeeeeeeeeeee e 43

7.3.1.3.11. Method OO_APP_UNLOCALIZE (OXB).....eveetiiiiiieeaaiiiiiiiiiiiiiieeeee 43

7.3.1.3.12. Method OO_APP_CAN_DELETE (OXC)....cveveveeeeereeeeeeeeeeeee e 43

7.3.1.3.13. Method OO_APP_CAN_MOVE (OXD)c.ovovureerirerreeerernnesseneneeens 43

7.3.1.3.14. Method OO_APP_VIEWER (OXE)cvoveueeeieeeeeeeeeeeeeeeeeeeeeeen e 44

7.3.1.3.15. Attribute OO _APP_ICON (OXF)vvereeeeeereeeeeseseeeesseeneseeessneseeenans 44

7.3.1.3.16. Method OO_APP_EXT_HELP (0X10) ...cceeviiiiiieeeeiiiiieee e 44

7.3.1.3.17. Method OO_APP_NOTICE_INSTALL (OX11)....cceovrieiieeerierereeeennns 44

7.3.1.3.18. Method OO_APP_ABOUT (OX12) ...cvvvvieeeiiiiiieeeeiiiiieeeeeeiiieeeeeennees 44

7.3.1.3.19. Attribute OO_APPSTRING (0x1000 and Up).......ccccvveeeerrnvreeeeennnnnn 45

A B B b - 1 4] PRSI 45

7.3.2. TI-BASIC EXIENSIONS. ...cciiiiiitiiiee ittt e ettt e e e e e e e st r e e e e e e e e e s ansbbeeeees 48
7.3.3. Shared-Code LIDrary ...t e e e e e 51
7.3.3.1. Creating the Library INterfaceuvuvviveiiiiiiiiiiiii e 51

7.3.3.2. AccesSiNg @ Library ... 53

7.3.3.3. Frame Description LANQUAGJEcevviiiiiiiiiiiiiiiieiesiieeeee e eeeeeeeeeeeeeeeeaeee 53

7.3.4. Language LOCAlIZAtION...........uuuriiiiiiieieeiiiiii et 56
7.3.4.1. Localizer TEMPIALEcooiiiiiiieieeeeee s e e e e e e e e e 56

7.3.4.2. HOW LOCAliZation WOIKSccvvveiiiiiiiiiiiiiiiiiiree s e e e e e e e e e e aaaaaaa e e 60

8. Integrating a Flash Applicationcooviiiiiiiiiiiiii e 63
8.1. MOUE SELLNGS ...eeeeeiieeeeieiiite et e ettt e e e e e e et e e e e e e e e e e e anbnbbn e e e e e eeeeeaannes 63
8.1.1. Mode NOtIfication FIAgScooiiiiiiieeeeee e e 63
8.1.1.1. Modifying Mode Settings Within @n APccooviiiiiiiiiiiiiieeeeeeee e 64

8.1.1.2. MO_option Array and SEtiNgSccoeeeeiieeiiiiiiii e 64

8.2. Switching to the HOME SCre@Nccooe e e 66
TR T O 1 -1 (o o PP PP PP PPPPPPPPPPPPPPPP 67
8.3.1. Built-in Functions and ComMmMandS............uuuuuiiuuiimmeiiaiaae e e e e e e 67
8.3.2. User-Defined FUNCLIONS and Programsuuueeiieeiiiiniiiniiiiieeeeeeeeeeeeeeeaaseeneeees 67
8.3.3. Flash App EXIENSIONS.......cooiiiiiitie ettt e e 69
8.4. Interfacing With TI-BASICooiiiiiii e e e e e e eeenns 70
8.5. Verifying the OS VErISIONcouuiiiii et e e e e e eenans 74
8.6. OptimiziNg COUE SPACEccoveeiiiiiie et e e e e e e e e e e enaans 75

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

v

Table of Contents

S TR N o I 1\ 76
9. Application Control FIOW...........coooi i 77
9.1. Event-Driven ArChItECIUIEuuueiii e e e e e eeenes 77
9.2. EVENT STIUCTUIE LAYOUL.ottt e e e e e e eenens 78
S IRC T O] 111 1 =T o KPP 79
9.4. Starting and Stopping an APPICALIONciiiii i 84
9.5, KeybOard EVENIS......uuuiiii ittt e e e e e e e e e e e e e e e eaaae 85
9.6. MENU PrOCESSING ...oeiiiiiiiiiiiiiiii ittt 85
9.6.1. SEALIC MENUS......ceiiiiiiie ettt e e e et e e e e e e e e e e e e s e e e e aaeeeeeeaannnnssnneeeees 86
9.6.2. DYNAMIC IMEBNUSueiiiee e i e ettt e s s e e e e e e e e e e e aaaaaaaas 87
O.7. PaAINt EVENIS ... i e et e e e e e e e e et b e e e e e e eeeeene 88
9.8. Background EVENTSccoviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 88
9.9. Default EVeNnt HANAIETcoovvviiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 88
9.9.1. CM_KEY _PRESS. ...ttt teeeeeeee ettt et ettt ettt ettt 88
9.9.2. CM_PASTE_STRINGt 91
9.9.3. CM_PASTE_HANDLEcoeeeeeeeet ettt ettt ettt 92

S IR IR T 4 S L PSPPI 92
0.9.5. CIM_R L.ttt e e e s 92
0.9.6. CM_DEACTIVATE ..ottt e e e e e e 92
0.90.7. CM_ACTIVATE .. et e et e e e e ee e 92
9.10. Installing, Moving, and Deleting an Application............ccccooovvviiiiiiiiee e, 92
O = o) g = T |1 T 95
10.1. TRIOWING AN EITOT ... 95
10.2. Delayed Error MESSAUESccoeeeeieeeeee et 95
10.3. Throwing YOUr OWN EITOISooiiiieeeeeeeeeeeeeeeeeee e 96
10.4. CatChiNg EMTOISo e e e 97
O T O 1T T o 11 o T o TSP 97
10.6. CAVEALS......eeieiiiiiiee ettt ettt e e e e et ettt et e e e e e e e e e e e e e e e e e eeanaaaas 98
10.6.1. Jumping Out Of TRY BIOCKSuutiiiiiiiiiiieiiieeiieee e 98

10.6.2. Referencing Auto Variables in ONERR/FINALLY Blocks..........cccccccvvvvvviinnnns 99

10.6.3. Where NOt t0 THIOW EITOIScovvviiiiieieiiiiiiiiiiiiicee s e e e e e e e e e e e e aaaaeeeees 99

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Table of Contents v

11. Creating the User Interfaceccoovveiiiiiiiii e, 101
11.1. Common Screen COMPONENTES.......uuuuuiiiieeiiiiiiii e e 101
11.1.1. Screen/Window Regions and Coordinates................cccceeevivviieiiieeeieeiniiennnns 101
L11.0.2. BITIMAP ettt e e e e e e e s e e e e e s s at e e e e e sansaeeaeeans 102
L1.0.3. ICON Lttt e e e e e e e e et e e e e s n s e e e e e annreaaeeennraaaaeans 102

IS AV o [0 YRR 102
11.2.1. Window Regions and COOrdiNAteSccovviiiiiiiiiiiiiiieeee e 103
11.2.2. WINAOW ROULINESeeeiiiiiieeeiiieiiiiitieeeee e ettt e e e e e e e s s asnnneneeeeeeeeeeas 104

I R T |V =T o 11 1 OO PR TTRPPPPPPPPPPPPRRN 105
11.3.1. MENU-DIawW STIUCTUIEcouiiiiieeie ettt e e e e s 106
11.3.2. MENU IDS ettt e e e et e e e e e eanaans 106
11.3.3. MENU ROULINES ... iieiiiei ittt s e e e e e e e e e e e e e aaaeeaaeeeeeeeeeeeeesnnnes 106

11.4. DIAlOg BOXESo 108
11.4.1. Dialog ROULINEScccoiiiiiiiiieeeeeeeee s s eees 108
11.4.2. DIalog FIEIAS.ttt 109
IR0 S I = o [T 1= G T PRRR 109

11.4.2.2. DYNPOPUP ...ttt ettt ettt 109

11.4.2.3. EDIT _FIELD ..ottt e e e 109

11.4.2.4, HEADERoiiitiiteeeeeete ettt ettt sttt sttt 110

L11.4.2.5. HEDIT .o e e e e e et e e e e e e e e e e e e e 110

11.4.2.6. HPOPUP ..ottt ettt ettt ettt 110

11.4.2.7. MENU L. e e e e e e 110

11.4.2.8. POPUPR ..ottt 111

11.4.2.9. SCROLL_REGION ...ttt a e e eeeees 111

L1420, TEXT ittt e e e e e e e s e e s e e e e e e e e e e 112

L11.4.2. 070, XFLAGS ...ttt a e e e e e 112

11.4.3. DiIAlog FIagSccooeeeeeeeeeeee e 113
11.4.4. Dialog Call-BACKSceiiiiieiiiiiiiiiee et 114

11.5. RESOUICE COMPIIET ... 115
11.5.1. DIALOG BOXES ...eiiieiiuiiiiieeiiiiiieeeaaiireeeeaaiiseeesaansseeeeesssssseesessnssseeaesssssneesesans 117
L11.5.2. MENUSooiiiiieeee ettt e e e e e e e et a e e s et e e e e e snnnnaeaeeen 118
L10.5.3. POPUPSooi ittt ettt e e e et a e e e et a e e e e nntrea e e e e nnnnaeeeeans 119

0 G = T3]] PSSR 120

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Vi Table of Contents

11.6.1. Files in Example and Explanation of Details ..o 123
12. Basic Text Editing FacCilitycooiiiiiiiiiiiiie e, 127
D2 I o [0 T (o T o | A = TR 127
12.2. Simple Text Edit EXamMPIE.......ccooviriiiiiiieec e 128
D2 TR O 1o o o Y= 1 o [0 SURPPUPPRRR 129
13. Memory ManagemeENtooeeeuiuiieiiii e, 131
13.1. The Heap (Dynamic RAM StOrage)ccooeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 131
13.2. FIlE SYSTEIM ..o 132
13.2.1. Opening Multiple Files for WRITE MOdE.......c.oooooeviiiiiiiiiieeeeei 133
13.3. Managing Variablescooi oo 134
13.3.1. Normal Symbol ROULINES..........c..uiiiiiiiiiieeeeeee s 136
13.3.2. Storing and Retrieving Variable Data...............ccccoeoeoeeiiiiiiiiiiiii 137
13.3.2.1. Store and Recall Look-up Paths ..o, 138
13.3.2.2. Recall LOOK-UP Path........cccviiiiiiiic e 138
13.3.2.3. Store LOOK-UP Path ..o 139
13.3.2.4. HSYM VarRecall (BYTE *Var, RECALL_FLAGS Flags)..........ccccveuvaunnn. 139

13.3.2.5. HSYM VarStore (BYTE *DestVar, WORD Flags,
WORD SourceSize [, parml1] [, parm2] [, parm3] ...) cccccvceciivrvrneennnn. 141
13.3.2.6. General Data StOrageuuviieeiiiiiiiee ettt 142
13.3.2.7. SYStEM FUNCLIONS ...uvviiiiiiiiiecee e e e e e e s eeee e 143
13.3.3. LOW-LEVEI ROULINES........cciiiiiiieieeeeeiiett s e e e e e e e e e e e e e e e e e e e neeees 143
RS TR T T I U 11 1= PP 144
13.3.3.2. Low-Level Folder ROULINESccoooiiiiiiiiiiieieeeeee e e 144
13.3.3.3. Low-Level Symbol ROULINESc.ovviiiiiiiiiiiee e 144
o DT | = R 1Y 013 PSPPI 145
I IO v o =171 o o PSR 147
14.1.1. Non-Negative or Negative INTEJEIScccoiiiiiiiiiiiiieeeee e 147
14.1.2. Positive or Negative FractionS.............uucceiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeveeeveeaiaes 147
14.1.3. Floating-Point NUMDEIS. ... 148
14.1.4. All Other Tags NOt LiSted HEreuuvuuuiiiiiiiei e 148
I 1 S SUESRPUPPRRR 148
I T | = 11 G 149

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Table of Contents Vi

14.4. Data Variable ... 150
14.5. TeXE VAIADIE ... e e e e e e eneananas 151
14.6. String Variable ... 151
14.7. Graph Databaseouuuiiiiii i 152
14.8. BItMAp PIC IMAQJEScovviiiii ittt e e e e e e e e e e eenaaaas 156
14.9. Tokenized Programs and FUNCLIONSccooeviiiiiiiii e 157
14.10. Programs and Functions in Text Formatcccoevvveiiiiiiiine e, 159
14.11. Third Party Data........cccooooooii s 160
14.12. ASSEMDBIY PrOgram... ..o 160
15. Expressions and the EXpression Stackccccvvvvviiiieecevveviiiinieeeen 161
15,0, OVEIVIEW ... s 161
15.2. Contiguous Tokenized Polish Representation............ccccevvvvceiiiieeeeveeeiinnnnnnn. 161
0 T - To £ SRR 162
15.2.2. NUMDEIS ...ttt e e e e e e e e e s e s eeeeeeeas 163
15.2.3. Variables, Units and Physical Constants...........ccccuuviieiiiiiinniiiiiiiiiiieeceeeeens 165
15.2.4. Other CONSTANTS ...uvvviiiiiiieeee e et e e et e e e e e e e e e e e s s eeeeeeeas 166
15.2.5. ONe-argumENt TAQGSccvveeruiiieeeeieeiiiiie e e e et e e e e e eara s e e e e e earan e e e eeeeenenes 167
15.2.6. TWO-ArguUMENT TAGScoeeeiiiiiiiiieeieeeeeeire e e e e e e e e e e e e e e e eeees 167
15.2.7. Tags That Take More Than Two or a Variable Number of Arguments 168
15.2.8. LiStS @Nd MALICES ...coeeiiiiiiieeeeieeeieiiit s eeeeeeeeeeeeeennees 169
15.2.9. Primary, Secondary, and Command TagsScccceeeeeiiiieiiieeeeeeeeeeieeeeeeeeeeeeee, 169
15.2.10. User and Application Defined Functions and Programs............cc.ccccvvveune. 170
15.3. External Versus Internal Tokenized POliSh ..., 170
15.4. Most Main Ordering and Internal Representations of
Exponentiation, Multiplication, and Additioncceeviiiieii e, 172
15.5. The EXPreSSION STACKcciiiiiiiieeeiiie e e e e e e 174
15.6. An Example of Working on the EStack ... 175
15.6.1. Estack Arguments and RESUILSuuuvuiiiiiiiiii e, 176
15.6.2. EStack CalCUlatiONScccioiiiiiiiiiiiiieieeee ettt 177
15.7. WOrKing WIth LISES ... 178
16. Working with NUMDErs ..o, 181
16.1. OVEIVIEW ... s 181

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Viii Table of Contents

16.2. Rational System vs. Float SyStem ... 181
16.3. EXACT/APPROX/AUTO MOUEScuuiiiieiiiiieeiiiiee et 182
16.4. Floating POINt NUMDEIS ... 183
16.5. Rational NUMDEISoouiiiii e 185
16.6. EStack ArthMETiC.......covueeiii e 185
16.7. CompleX NUMDBDEISooiii e e 186
17, Graphiing .oooee oo 189
17.1. ThE Graph SCIEEN ... 189
17.2. Working with the Graph AppliCation...........ooooviiii i 190
17.3. TWO Graph MOGE ... 192
17.4. Graphing FUNCHONSovviiiiiec e e e e 193
17.5. Graph Application Memory USAQEccceveiiiuuiiiiiieeeeeeeeeiiiiis e e e e e e eeeasanes 194
17.6. Available Graph System Routines and Global Variables............................. 195
18. TI FLASH Studio (IDE) OVEIVIEWcceviiiiiiaeeeiieeiiiieee e 199
RS 0 I 1 1 o o 11 o 1o P 199
18.2. DeVelopPMENt SYSIEIM 199
18.2. 1. REQUIFEIMENTScciiiiiieei et e s e e e e e e e e e e e e e e e aaaeeeeeeeeaaens 199
18.2.2. INSEAlIALION ... e 200
18.2.3. Compiler/ASSEMDBIEIILINKEYviiiiiiiiiiieeee s e e e eaeeaaeees 201
18.2.4. SIMUIAtOr/DEDUGUETcoeiiiiiiiiie e 201
18.2.5. IDE OVEIVIEWeviiiiiiiieeeee e e e e e ettt e e e e e e e e e s e sttt eeeeeaeeeesaannnnnnneeeeeeaeeens 201
18.2.6. UNINSIAlliNGcccoo e a e e e e e e e e e e e e e e e e 203
I W o] o To] PP 203
18.2.8. REIEIENCES ...ttt e e e e r e e e e e e 203

18.3. TI FLASH Studio INtErfacecovvvvueiiiie e 204
RS0 T I 11 /= o 1 205
18.3.2. EQIE IMIBINU .ttt e e e e e e et eeeeaeeeas 206
ST TG BV TV /= o U S 207
18.3.4. PrOJECE MENU ... e e e e e e e e e e e e e e e e e e e 211
18.3.5. DEDUG MENU ...ttt 212
18.3.6. SIMUIALON MENUvviiiiiiiiee et e e e e e e e e s eeeeeas 214
18.3.7. LINK MENU...uiiiiieiiii st e e e et e e e e e e e e bbb e e e e e e enraaa s 215

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Table of Contents ix
18.3.8. WINAOW MENU......uiiiiiiiiiiieeeiiiei ettt e e e e 215

18.3.9. HEID MENU ... e e e e e e e e e e e e e 216

S - Vg]] PSSR 216
18.4.1. Creating a Flash Studio ProjecCt...........couiiiiiiiiiiiiiiiiiieeeeeeeeeeeee e 216

18.4.2. Building the ApPlICatioNvvuiiiiiiiiiccee e, 217

18.4.3. Loading the Application into the Simulator.............ccccceeeeeiiiiiiiiiieeen 217

18.4.4. Debugging the APPIICAtioNuvuiiiiiiiiiiiiiieie e 217

18.4.5. Terminating Tl FLASH StUIOccuviiiiiiiiiiiiiiiieeeeeeeeeeeeieeee e 217

18.4.6. Preparing the Application for Site Testing........ccccuvvveeiiiieeeiiiiiiiiieeeeeenen 218

18.4.6.1. Educational and Professional Developersccccccceveeeviiiiiiccciinvieieeeeeen, 218

18.4.7. Preparing for Public Release.............cooviiiiiiiiiiiiieeeee e 219

€1 (0151 7= 1 Y2 221
Appendix A: SYStem ROULINES........cccuuuiiieiiiiii e e e e e 225
AlgEDra ULIHTIESceeeeeeiiie e e e e e e e et e e e e e e e eeeanes 227
are_expresSionS_IAENTICAL............iiiiiiieeeeeee e e e e e e e e e e e e e e e 231
COMPAIE_EXPIESSIONS ...ciiiiii e e e e ee et e e e e e e e e e e e e e e e e aaaaaaaaaeeeeeeeeeeens 232
IA_PUSN_IINCT. .t e e e e e e e e e 234

fACIOr _DASE INUEX ...t eeeesaeerrrerranes 235
FACTOr_EXPONENT_INAEX ...ttt e e e e e e e e e e e e e aan 236
has_different_variable ... 237

1 11 [238
index_if_pushed_binomial_iNfo ... 239
index_if_pushed_gquad _iNfO........cccoiiiiiiiiiiii 240

Lo = a1 [y 1T g o (=] o 242
index_of lead_base_of lead term ... 244
index_reductum_with_tag _Dase...........oooiiiiiiiiiii e 245
INAEX_IMNQ_TACTONiii i e e e e e eeeaeees 246
iNdex_rmng_fCtrs_Start DASEccieeiiiii i 247
index_rmng_fctrs_start_ Dase_1agccoooovviiieeee e 248
index_rmng_fctrs_start fCtr tag.....ccooooeeiiiiiiii 249
EST{==o) H= Vo 250
IS_INAEPENAENT _OFf .o 251

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

X Table of Contents

is_independent_Of L@lccoouiiiiiiiiii s 252
is_polynomial_in_var Or KEIM ... e e e 255
iS_tail_iNdePeNUENT_Of.... . e 256
(IS =L T 0] 1] o LT R 257
IS_totally _POIYNOMIALcoiiiiiii e 258
=T Lo R o= F=1= T T [S 259
=T o [= (o o] g1 T 1= G 260
== o I (=] 0 0T o [GO 262
1o 1T T o [T o (=T TSR 264
(g b=TT I e (=] o TV L1 o 1= GO 265
e oI Vg =T g VA 01 V/=T gl ot] g oI T F<To] o [266
NEXT_Var_Or_KErNEI_INAEXuuuiiiiiiiiieiiie e e e 267
aT0 T a o ol = Tex (o] g T Lo (=) G TR 268
[0 TUES] T 01U | A = 11 (o S 270
01U] T o1 | A (=] 0 271
[o1VES] g T eT0] 051 v= 1| A = [(o] = SR 272
PUSN_dENOMINGLON ...ttt e e e e e e e e e e e e e e 273
push_dependent _faCtOrS......ccccoiiiiiii i 274
PUSN_dEPENUENT_TEIMS ...ttt e e e e e e e e 275
o1V L] g T e (Y=Y 0] AV T 276
10 o V2o 1 X PP PPPRP S PPPPN 277
T8£S o Y20 1 SRR 278
push_independent faClOrS ... s 279
PUSh_INdePeNdent_teIMISoiiii et e e e 280
[oTVES] a1 (=To T=T S o[l o PSR 281
PUSHN_INTEOET _ICIM L.t e e e e e e e e e e e e nnneeees 282
PUSh_NONCONSIANE_fACLOIScoiiiiiiii i 283
PUSN_NONCONSTANT_TEIMS ..ot e e e e e e e e e e eeneeeees 284
PUSh_NONNUMETIC_FACIOIS ..o e e 285
[TV] AT 410 41T = 1o] 286
LU oL o =] o | PP P PP PRPPP P PPPIN 287
push_poly _deg in_var or_Kernel ... 288
oW] TS U] o = A T T 1 1 1 T 289
push_substitute SIMPIIYcooeiiiii 290

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Table of Contents Xi

push_substitute_using_such_thatcco 291
OV A T2 T =T 0 T - U1 SRR 292
ST T 0 = 293
(=10 [0 T (010 0 To [PR 294
remaining_factorS_INAEXcooiiiiiiiiiiiiiiee e 296
replace _toP2_WIth _IMIe ... e 298
Y 0 1 T PP 299
BV _QEIAPPID .. 301
R o[OSSP 302
OO _appGetPUBIICSIOragecccii i i i e s 303
OO _appISMAarkedDeEIELEcooiiieee e 304
OO _apPMaArkDEIELE.uuuiiiccei e 305
OO _APPNAMETOACB ... s 306
(O TO - o] 151211 dU] o] {253 (o] = To [RSP 307
OO _CONAGEIALLT ...ttt e e e ettt e e e e e e e s e bbb e et e e e e e e e e e e annnbeeneees 309
(O 1O D=1 1= I RN 310
(O 10 D111 (o) TP PPPRN 311
(@ 1O T 1111707 | 312
(O 1@ = 7Y o] o AN £ 1 S 313
(@@ T 1 7 1 1 S PRR PSSR 314
(O 1@ = 1S A £ 1 315
OO _INSEAIAPPHOOKttt e e e e e e 316
OO _InstallAPPHOOKBYNEAIME ... 318
OO0 _INStallSYSIEMHOOKcoeeiiiiiee e 320
(@@ T VL= SRR 322
OO _INEXIACB ...ttt e e et e e sttt e et e e e e e e s s e s bbb bbb e e e e e e e e e e e e e annbrneees 323
(@@ I = (=7 4 = SRR PR 324
(O 1@ ST 1A o] oY £ 1 S 325
(@@ TS 1= 7 1 1 SRRSO 326
OO _UNINSLAIAPPHOOK ... e 327
OO _UninstallAPPHOOKBYNAIME.........uuiiiiiiiieiieiiiiiiiiiie et 328
OO0 _UNiINStallSYStEMHOOK......cccoiiiiii e 329

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Xii Table of Contents

(OS] 4)T = (= 331
L=< o | = PSPPSR 333
[1@ =T oo | o | 334
D= = B] 11 335
DataTYPENGIMES. ...t e ettt e e et e e et e e e e e e e bbb e e e e e eeennnanns 337
(o =T AT =1 (o] o SRR 338
LT B L= = W N o[PS 339
GEtFUNCPIGMBOAYPLE ... s 340
QSYSPIOIECIEA ...ttt e e e e e e r e e e e e e e e e e ee s 341
Y 1 E= Tl Y7 0TI (1010 F 342
91> [T USSR 343
(D11 (oo E PP TP PP PPPPPPPPPN 345
[T F=1 [0 To 72X [347
(D] F=1 076 | B o H PP PP PPPPPPPPPIY 349
(D=1 (oo | AN = A 350
DIGIMESSAGE.tttteeieee e e e ettt e et ettt et e e e e e e e et r e et e e e e e e reeaaeeeas 353
[= YA k= 1 0] =1 11 (o o 354
ERD _diSMISSNOLICE ... euutttiiiiiiiieee st e s ettt e e e e e e e e eeas 356
N I 1] o 357
V£ T = PP PUPUPPPOPRTPPRRN 358
V21O 01T o PP PPRPPPPPOTPPPPRTN 360
VAISAVEAS. ...ttt ettt e e et et e e et e e e b e e e e e e tab e e aaeeane 362
Direct Floating Point OPErationsuuuiiiiieeiieiieiiiiie e e e e e e e e 363
L= (o0 1 PP PP PP TUPPRTR PP 367
= o0 1] [P PPRRRPRRIR 368
L= LS | PP P PP TUPPRTR PP 369
=] S ERERPRR 370
L= 2= | PP PP UUPUPPPPPPPPPPPPPRN 371
L= 12 1 VOO PUPPUPPTTRR PPN 372
== 0| o PP PPPPPPPPTP 373
o070 F= T (o 374
o1t | ool o PP PPRPRPPRTR 375
oTol0 (o] 1 ¢ o OO PPPR S TPPPPP 376

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Table of Contents Xiii

0Tt 0 11V PEERRPRRO 377
o Tod0 | (o] o Vo T 378
o070 | 011 | 379
oTod0 | 0 1=To T 380
o070 £ U | o 0 381
(o= To] 0 L= TP UUPPUPPTRRPUPPN 382
(072 (o0 L1 o PP PPPPPPPPRRON 383
(o= 1= | o SRR 384
(o= 1511 o] o PP PPPPRPPRR 385
(or= 1 22 | F PP PP TUPPRTR TSP 386
(o= 1= 0| o PP PERRPRR 387
L7070 1 ST PPPTTPPPR T TPPPTTR PP 388
o701 o P PUEERPRIR 389
(o7 | PSP PP PPPPPPPT 390
(072 o LT UPPTPRRPN 391
CK VAl _FlOAL... ... e a e 392
o | o SRR 393
(o3 (o T 1 10 USSP PPPPRPPRN 394
(10 S TP TP PPT T TUPPRTRRPT 395
o0 1] [P PERRPRRR 396
(1] | [P T PP TOPPRTR PP 397
(o= o o SRS PPR 398
0o | PPN 399
(01 = PP 400
(o3 ¢= 1] o 1P PPPRRPRRR 401
estack_NUMBEr_t0 FIOAL..........oooiiiiiiieeeee e e e e e e e e e e e e e eeaeeereranes 402
ESTACK 10 flOALeieei e 403
1S TP PPPTPRPRN 404
DS e e e e e e e e e et rraaaaaaaaaaeens 405
10T PP TP P PP PPPPPPPPRPPPY 406
1.2 T P RSSUUSRR SR 407
L1201 OO 408
IS_FlOAE_INFINITY ..ot s 409
iS_float_NEQALIVE ZEIO.....u i 410

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

XV

Table of Contents

IS_flOAL_POSILIVE _ZEIO ... s 411
is_float_signed _INfINILYccoooiiii i 412
IS_float_tranSTiNItE. e 413
is_float_unsigned _INf OF NAN...........oooiiii e 414
IS_FlOAt_UNSIGNEA_ZEI0....cciiiiiiiiiiieee et e e e e e e e e s annnes 415
[1 1= L PP UPPPPTTPRRN 416
oo PP 417
0T O PRSP P PPPPPPPPPN 418
00 o | PPN 419
0 PSPPI 420
0TV L] o T [- | 421
PUSh_Float_to_NONNEQG_INT.......oiiiiiiie e 422
(0 10 T B 2RSSR 423
(0 18 Lo 1 02 Y o O 424
(011 o 1 426
L1 PP UUPUPPPPPPPPPPPPRN 427
£ 1 o S SRURPPR 428
S0 | P 429
[210 P PSPPSR 430
122 0] o TR PPPPPRRTRRI 431
3117 0] = YRS 433
(O 11T o1 0 1 o 435
AISplay _StAtEMENIS ... e a e 436
[= YA 1 A T |1 o 437
DraWSIIWIALNP ... e e e e e e e e e e e e e e e e s s s e e eeeeaeeens 438
PArMSZDo oo e e e e e e e et ettt ettt e e e — b — bbb s 439
Lo ST D (o PP 440
Lo LRSSy D] o P 442
ParSE2DMURIEXPceeiieeeieeie et e e e e e e e e e e s 443
[1) P2 LT o | 444
ST WITEN Lo e e e e e e e 445

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Table of Contents Xv

ErTOr HaNA NG - 447
(ol (=T T =T g (o] g oo] o] (=)« VA 449
ER _CACN ... e —————————————— 450
ER SUCCESS. ... ettt e ettt e e ettt e et e et b e eaeeeara s 451
oy S L)V = T 1 S 452
N {110 1A £ 454
(=12 B o 1= (o To 455
TINA I Or _MESSATE. ittt e e e e e e e e s e e e e e e e e e e e anns 456

EStacK AMNMETIC e 457
= o [o [0 (o TN (o o SRS RURRRP PPN 461
=T o A (o T (o] o PP P PO P PP PP PPPPPPPRN 462
[or= 1 I o L= - o] o 0)1 (=o [P PPPPPPSRRRR 463
compare_complex_MagnitUdES...........coiiieiiiiieiiieiiiii e e e e e e e e e e e aaaaeeeaaeeeeees 465
COMPATE_FIOALS... ...t e e e e e e e e e 466
(od0] 10 =T (=T 4101 0] o T=T £ TSP 467
did_push_cnvrt_Float_to INTEQENooviiiieeeieiiieeiii e e e e e e e e e e e e e e e e eeeeeees 468
(o T\ Vo [T (o] o ISP 469
[0 T= | TP PP PPPPPPPRTPPN 470
(o= AT | o TSRS PRSP PPPPPPPPPN 471
INTEYEN_NON_UNKNOWN ..ottt et e e e e e e e s st r e e e e e e e e e e e s annes 472
(L3 o] (o = L= T o [473
(1S oo] 0] (=3 G (o = | S 475
IS_COMIPIEXO. ...ttt e et e e et e e et e e e e e e e e e r et e e e e e e e e e e e 476
(IS oo 1] 0] (=0 N 11V] 4] o 1= SR 477
(LS o]0 1151 7= | 478
is_Float_exact Whole NUMDEN ... 479
IS_IMINUSL .ttt e e e e e et e et e e e e e e e e e s bbb bbb e e et e e e e e e e e e e nnnnbnnneees 480
IS_POS_iNt_and_€0_QUANTUMuiiiiiiiiiieee e e e e e e eeeee e e e e e e e e e e e s ssnnneeeeeeeeeeeeeeeeesannnnnnes 481
is_reciprocal_of QUANTUMccoooiiiiii e 482
(LT L= 18T 1] 1= 483
1O PPN 484
531 O PEPRRPRS 485
L L=T0 = 1 (o] o S 486

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

XVi

Table of Contents

[0 TUES] = Lo T .11 1 £ 487
OV o TE= Vo T o) [1= TR 488
PUSN_AIfTEIEINCE ...t e e e e e e e e 489
o1V ES] a T e [oto I a1V T0] 0= £ TRRR 490
10 T ST o] €] 0 1= TP PPPR R TPPPPP 491
push_minus_recip_Of qQUANTUM ... 492
[0V ES] T 41T T= L 493
push_negate_quantum_as_NEQINTccouuriiiiiiiiiiiiiii e e e e e e 494
0TV L] T o T 495
PUSN_PI_ON_QUANTUIM ...ttt e e e e e r e e e e e e e e e s s nnnnenees 496
[TV L] T o oo 11 ox PR 497
push_quantum_as_NONNEQAtIVE INT........cciiiiiriiiiiiiiiiiiiei e e e e e aeees 498
push_quantum_pair_as_POS_fracC ... 499
[0 TU] T = L4 500
PUSN_TECIPIOCAL ...ttt e e e e e e e e 501
push_reciprocal Of qUAaNTUMccooiiii i e 502
PUSIL_SUIM ..ttt ettt e e e e e e e e r e e e e e e e e e e e nnn e ee s 503
01U 1 T 504
105 o 1 TP PP P PP PPPPPPPRTPPPIN 505
replace _top_ WIth reCIPrOCal.........uciiiiii i 506
replace_top2_With_diffEreNCe............uuiiiiiiiieee e 507
replace_top2_WIth_Prode e s 508
replace_toP2 WIth FatiOuuueeieiiiie e 509
replace _toOP2_WIth SUM 510
ES10] o] (= Tox i £ .4 T (o o TSRO 511
ES10] o] 1= Vo i A i o T (0 o RSRPPR 512
LU LTSI (o o PP URROTPPRRPPR: 513
ESTACK ULIITIES ..o 515
ChECK _ESLACK _SIZE ...ciii i e e e e e e e e e e e e e e e e e 517
elete _DEIWEEN ... e 518
(o= [(R = q o1 (=TT (o] PP P P PP PPPPPPPPPPPPRN 519
deleted _DEIWEEN ... e 520
(o= 1=y (=To I = d o1 (=TT (o] O T PP PP PPPPPPPPPPPPPRN 521

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Table of Contents XVii

ESTACK 10 _SNOI .. e a e 522
ESTACK 10 USNOI ...eeiii i e e e e e e e e 523
LT A= | LU 524
e ToNV R o1 VT =T=T o T (o T (o | o TR 525
MOVEd_DEIWEEN_T0_TOP 1ottt e e e e e 526
LSy =0 (=110 T T e = 527
OV ES] AT 01T 0T = o I 528
PUSIN_EXPIESSION ...ttt et e nnnrnneeees 529
o1V ES] o I [= L (o T - L O 530
PUSN_IONG_TO_INTEOET ...ceiiiiieiiee ittt e e e e e e e e nneeees 531
o1V ES] o T (U= 1 a1 (0 o O TPRN 532
PUSN_UIONG_TO_INEEGET ...ceiiieiiiiiieee et e e e e e e e e e nnneeees 533
10 Y g U S g o] o (o T 11 (= o = PP 534
FESEL _ESTACK SIZE...oiiiiiiiiiiiii e 535
Expression Evaluation / Algebraic Simplification..............cccoo 537
0T (o= [0 - | PSPPSR 539
NG _APPIOXESI ..ottt 540
I T == ox U 541
N [T = 10T = 1| S 542
10 =T o] o] (0 G PP PPPRPPPP PPN 543
OV ES] a0 [T= | 544
PUSN_Greater_thanooiiiiiiiiie e 545
push_greater than _or _€QUAIS...........ccooiiiiii i 546
PUSh_iNterNal_SIMPITY ... 547
T8I T (=SS = o SRRSO 548
push_less than _or _eqUAIS............ccoo i e a e 549
PUSN_NOT_EQUAIS ...ttt e e e e e e e 550
OV TS 4]] 1 32 551
PUSh_SIMPIlify_STAIEMENTS ..o 552
replace_top_with_post_simplified............cco oo 553
Il S s 555
L ol o3 TP SUPPTRTPT 557
4 [0] OO PPPPPPP 558

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

XViii Table of Contents

[OF (ST= (=R 559
[LY [TR 560
[) 561
[T [0 | T) AT 562
[T L0 [N T T 563
[CT=] TR 564
[l =1 o 1 565
L CT=) 1] = 566
T T o TP 567
] U (T 570
[<= o TR 571
(ST SY 1= U I T4 < 572
F S B P OS ..o 573
[RSY= SS T4 574
[T V4= 575
Y =1 11 1 576
[l I3/ 1T PP PP PPPPPPPPPPPP 577
YA (TR 578
0L T 7=\ E= 0 4 T 579
GraPhiNg ..o 581
(08 QY= 1 1o [I | = TR 583
(o 0o o1 o | >\ PP 584
CMNA_CIFGraPR .. e a e 585
(o3 0o [£ [0 [0 | o PP T PP PPPPPPPPPPPRN 586
o] .o JES1 (o o o | o P PEPRPRR 587
(O 011]| 7= b R 588
CPEIDIAY ...t e e e e 589
L0 o 11 U] o 590
(O304] 010 [=T o TP PPT T TPPPPPN 591
L@ 1O =11 = o 593
EQU _SBISTYIE ...ttt e e e 594
[T 1o | 0T Lo 595
[T Lo (€18 1] Lo 596

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Table of Contents XiX

OF_CPLINAEPINC ...t e e e e e e e e e r e e e e e e e e e 597
Or_delete flAPIC ...uuiee i 599
OF_DISPLADEIS. ... e e e e e 600
OF XFES PIXEL et ee et aaaaaaaa e 601
(CT =T o] 0V Yo 1)Y= LR PPPRP T PPPPP 602
LT (S PP 606
€T O 1 o] I = 607
GILINEFIL. ..ottt e e e e e e e e e r e e e e e e e e e e e e nnnnnnee s 609
L I S =T | = o] o TSR 610
GT_Regraph_if_NECCY...ciiiiieiiiiiiee et e e e e 611
) (= 0[O RSP 612
DOV 1 0] PSPPI 613
XOVEPTOF .. ettt e e et et bbb e e e e e e e st e 614
YCOVEFIOP o 615
O3V 1 2 (0] PP PP PP 616
HOME SCIEEN ... e e e e e 617
CIMO_CITNOME .ottt e e e e e e e e e bbb e e e e e e e e e e e e aann 619
(o o 0 157 o] T 1 4T S 620
HOMEBAIONE ...ttt e e e e s et e e e et e e e 621
HOMEEXECULE ...t 622
[DT 0[] A 0 PP 623
HS _QBIENTIY ot e et e et ettt e e 624
HS_ POPESIACK ...ttt 625
LT =T T o PSP 627
0] 629
o) 1 PP PPEPRPR 631
O S S B S R ittt 632
KBYDOAIT ... 633
AIPNALOCKOT .. 635
AIPNALOCKON ...ttt e e e e e e e e e e e aaae 636
(1= 7Y o] g TS r= LU [637
GREYFIUSI ...ttt e e et e e e e e e e e e e eeee s 638
GIKBYIN. ettt e e et ee et ee et ee et er et en e, 639

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

XX

Table of Contents

0] 0 | USSP 641
LS (=10)\ TP 642
00 1] (o o) PP PPPPPPPPPP 643
OSCRNECKBIEAK.......uetiiiiiiiieee ettt e ettt e e e e e e e e e e e s e e e e aaeeeeeeeennnnneenees 644
(O 1S @1 =TT =] =T | 645
OSDISADIEBIEAK ... 646
OSENADIEBIEAK.......uuiiiiiiiiiie e 647
OSINItBEtWEENKEYDEIAYccoiiiiiiieeeeeee e 648
OSINItKEYINIIDEIAY ...t e e e e e 649
PUSIN_GEIKEY ...t e e e e e e e e e e e e 650
[OTUES] 0= YR 651
QMOAEKEY ...t e e e e e e e s e e e e e e e e 652
(010371 (0= TR UPPPPP PPN 653
(1S (0] 1= Y] 1 F= 1o Lo - 654
.. 655
BatTOOLOWHFIASI......cciiiiieiieecee e e e e e e e e e s eeeaeeeens 657
LIO _RECVDGALAcceieiitiiiiiiitiiitee et e e e e e e e et e et ettt ettt et e e e e e e e bbb bbb 658
I (O ST =T0 (o | I = | > WS 659
OSChECKLINKOPENeeieeeeeee e e e 660
(@ 1] IR] (@ [0 1= 661
(@ 1S T 1 (@ oT=] o 662
(@ 1] I] (=S 663
(IS = 1 [0 1Yo o T TP UURPPUPPPRRR 665
= 1| = 1| PP PPPRPPPR 669
=10}V = V| PP PP P PP PPPPPPPPPRRRPPIN 670
(o3 9o = To] 1 - WSS UURRRPPPPPPI 671
(o3 0o [0 (o F PP P PP PP PPPPPPPPPPPPRN 672
(o [To I 0 aE= T o= To [[(=To Fo Y (=T Lo SRS PPPPRPRRRR 673
1T 1=V 674
(LYo [N = T 4 0= UL G 675
oS = (=T 0= AT Lo 676
0= T oI = 1| PP TP PPPPPPPPPPI 677
o1V ES] o TE= U0 To [41T o | SR 678

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Table of Contents XXI

PUSIN_COIAIM et e et e e e e e e e e e 679
o1V ES] o T X011 1o o PSSR 680
PUSN_CIOSS_PIrOQUCTciiiiieeeiiiiiie ettt e et e e e e e e e e e e e nnneeees 681
[TV L] o T U0 0 551U . ISR 682
PUSN_AETEIMINANT.eiiiiiiii e e e e e e e e e e e e e s e nenneeees 683
01U] 1o | =T 684
[0V L] aJe [T 0 T=T 0 F=] o] o AR 685
01U] 1o (0] A= To [0 686
[TV ES] o 1o [] A 1Y 2 687
01U] 1o [A 1 | 688
o1V ES] o T e [0 =TV o 689
PUSN_OTPIOTUCT. ...ttt e e e e e s e e e e e e e e e e e e e nnnnneees 690
T8£S =1 0 Y/ o SRRSO 691
[0 TU] =T Y 692
PUSN_IAENTIEY ML ...t e e e e e e e e 693
[TV ES] T =3 A o T 1 1=\ 694
01U] T = U (o T 695
o1V ES] o T 4= L1 a1 1 2 PR 696
010 4 T U PP PPPRPPP T PPPON 697
o1V L] o T 14 1=To 1=V o (PP 698
PUSI_IMITOW ..ttt et e e e e e e e e bbb e e et e e e e e e e e e e aananneeees 700
01U] T 0] 0111772 Vo o F 702
[TV] T TSV] 703
PUSN_NMEWIMAL ...ttt e e e e e e e e e e e e e e e s e rneeees 704
[TV ES] T o oo | 1] A 705
PUSHN_TANAMAL. ...ttt e e e e e s e e e e e e e e e e e e s e e nnneeeees 706
OV o T (Lo I (o)1 =T PR 707
PUSN_TEVEISEA_TAIeeiiiiiieeieei et e e e e e e e e e 708
T8I N 0 VA =] = (o] o PSR 709
[0 TU] T (011477 Vo o S 710
PUSIN_TOWIM ..t e nnnnnees 711
oW] T 011477 Lo 1 o 712
PUSIN_TOWSWEAP ...ttt e ettt et e e e e e e s s e e et e e e e e e e e e e nnnnnneeees 713
0TV L] TS o | o I 714

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

XXii Table of Contents

PUSIN_STAUEV ...ttt e e e e e e e e e e e e e e e e e n e e 715
OV ES] A TEST U o] 2 1 = TSR 716
PUSIN_SUMIIST. ...t e e e e e r et e e e e e e e s e e e 718
PUSN_TFANSPOSE BUX .vvvurutuuiiieiiiieeieiieeeeeeeeeeaeeeeeeeeeeeeeeeeeeeeaeaseterrr b e e aeeeesaaaaaaaas 719
PUSI_UNITV .t e e e e e e e e e s s e bbb e e e e e e e e e e e e aannbneeeees 721
01U ES] TV Z= T4 =g (o7 T 722
remaining_ElemMENt COUNTuueeiiee s e et e e e e aeas 723
o o 725
= Vg o I o o (o T (o o F P PRPRPRR 727
(1S =To (VLY== A (o T 728
IS_NMEOALIVE ...ttt e et e e et e e e e e e e et e e e e e e e e 729
(1S LoAYZ=] O 730
IS_NMONNEUALIVE ...ttt e ettt e e e e e e e et e e e e e e e e e et e e et e e e e e e e e e e nnnbrnenees 731
(1S Lo g o0 ET1 1)V 732
IS POSITIV ..ottt ettt e et ettt e e e e e e e e n et it e e e e e e e e e e aannannne 733
(1S =T | TR 734
(S0 010 (=111 0= o IR PPPPR T PPPPPN 735
([=F=To ot o) 81 ox il =Tod (o g 1 1o 1= G 736
(=T o o T1ST [0 Lot A (= 0 T o 1= 737
(o] o] 1o T (o] o U TP 738
0TV L] = U T 739
PUSh_bUt_CONJUNCE_TACTONccciiiii e e e e e e e e 740
0TV L] T 1o 741
010 o T o ST P PP PP PP PPPPPPPTRPPPPIN 742
T £ o 1 1= o SRR 743
remaining_CONJUNCES INAEX ...uuuuuiiiiiiiieiie et i e e e e e e e e 744
remaining_dISJUNCES_INAEXuuviiiiiiieiieee et e e e e e e 745
replace _top2 WIth_ andeuueiiiiiiiii e 746
replace_tOP2_WIth _OFe e 747
1Y PP O UURRPPPPPRPPPN 749
Are_UNItS_CONSISIENL.....cci i e e e e e e e e e e e e e aaaaeees 755
(o 1o I o]0 £ 1= U 1 o =1 4 L 2P 756
did_push_approx_infleCtion_POiINt..............uuuiiiiiiiiiiiiiir e e e eeee e e eeeeaeaaaaees 757

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Table of Contents XXIii

(o 1o I 010 £ TS 15 PP 758
[TV] o TS A0 (=T 1)Y= LAY/ T 760
PUSINL_GDS .. 761
01U L] o JE= U0 T 762
PUSIN_GCOSK ...ttt e e e 763
01U] = L | o 764
0TV L] = U1 [765
PUSI_GEAN ... et e e e e e et e e e e e e e 766
0TV ES] 4 JE= L= 1o o T 767
PUSIN_CRITING .ot e e e e e r e e e e e e e e e e 768
o1V L] o T 0] 1 1 769
PUSN_COMUAENOM ...ttt et e e e e e et e e e e e e e e e e s e nnneeeees 770
10 £ o N oo T SRRSO 771
o1V ES] g Tt 0] 051 v= L | A (=] 1 SR 772
PUSI_COS ...ttt ettt e e e e e et e e e e e e e 773
01U] T 0 1= o I 774
01U] T [T 775
o1V ES] g J0 [T o T (=TSSR 776
PUSN_dOt_EXPONENTIALEceeeiiiiiiiiiee et e e e e e e e aneees 777
0TV L] o T3 778
PUSIN_EXPANG ...ttt e e e e e e st e e e e e e e e 779
O TUES] g I =Y o T0] aT=T o1 F= L 780
oV ES] g I (=T Lo [=To [o] {0 SR 781
10 g =Tt (o] PP PP PP PP PP PPPRN 782
[0V ES] a1 = T (o -1 I 784
PUSI_IOOT ...t e e e e e e e 785
PUSH_fractional Part...........eieeiiiii i 786
PUSh_gCd_then_COfAaCIONS ... 787
10 £ o T PRSP 788
[oTVES] a1 C=To =T o= T SO 789
PUSN_INtEOEN _QUOLIENTceiii ittt e e e e e e e e e 790
oV a1 C=To L=t A =] 0 4= UL T =T 791
10 o (= PP PP PP PP PPPPPPPPPRTPRPTN 792
0TV] T L1 o 794

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

XXIV

Table of Contents

PUSIIL_IN ettt e e e e e e e e e e e e e e 795
[0 TUE] T (o T 1 0 796
PUSN_M@AKE PIOPET ...ttt e e e e e e e e e e e e e e e e e e nnnnenees 797
01U L] o T 4= V- R 798
10 T 00T Pt TP PPP R TPPPPPN 799
01U] T 0= V0 800
01U] T 1.0 801
PUSIL_IMIN 1o e e e e e e e e e s e e et e e e e e e e e 803
0TV] T .0 1 804
PUSIN_IMINZ .ttt e e e e e e e s e e e et e e e e e e e s e b rneeees 805
0TV E] T .41 To P 806
PUSN_NEXE_AID_INT...euiiiiiiiiiie e e e e e e e e e 807
PUSN_NEXE_ArD_FE@I.....ceiiiieieeii e e e e e e e e e e e e e e e e e e nnnnneeees 808
01U] T 11 R 809
PUSH_NEN_dEFVALIVE ... 810
0TV L] T 0 1= 1 PSR 811
PUSN_PR@SE ... 812
[OTUES] o T 010] Y/ o | (P 813
01U] T G o 814
0TV L] o T = (o 1 815
010 T = 1o [F= 10 SO PPPPR R TPPPPPN 816
[0 TUES] T = o | o] 817
01U] T = 818
[TV ES] g T (=T (o = 1T | = 819
0TV ES] T o | | R 820
10 o I 0] €= L= OO PP PP TPPPPPN 822
OV ES] o T (o101 o TP 824
PUSIN_SEOUEINCE ...ttt ettt e e e e e e e e e s r et e e e e e e e e e s nnbnnenees 825
T £ o S 1 SRR 827
[0 TU] TS 1 11 1 829
PUSII_SIN ettt e e e et e e e e e e e 831
0TV] TS 1 22 832
PUSIL_SINN et e et e e e e e 833
0TV L] TS | 834

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Table of Contents XXV

PUSI L _SOUAIE ...ttt e ettt e e e e e e e e e e it e e e e e e e e e e e e nnnnneees 835
OV ES] TS =T Lo F=V o [SRR 836
PUSN_SUMMETION ...ttt ettt e e e e e e s e e r e e e e e e e e e e e e nnnneeees 837
01U L] o T €= o P 838
PUSIN_TANKN ... e e e e e e 839
01U] 1 T 840
(7= VY= (o T (o | o 841
replace_tOP2_WIth_POW.......coeeiiiiiiiiiee et e e e e e e 842
Y =T e aToT VALY F= T T= Vo =T g1 o | P 843
[[ST= 101 AN | [Lo 845
HEAPAIIOCHIGN ... e 846
[(ST VoY oTed e | a1 I] (01 847
HEAPAIIOCTRIOW ...t e e e e e e e 848
[(ST T oY AN T 849
[(ST T o @] 1 0] o] (=11 T TP TP TP TP TPPPRN 850
[(ST T o] BT (= PR 851
[[SToT 0] (=T PP RRPPPTPTR 852
[(ST Ve 1= = o o [853
[[Tz 1oL CT= 1 o o 854
HEAPLOCK ...ttt e e e e e e e e e e e e 855
[ST = T 1Y = G 856
HEAPMOVEHIGN ... e e e e e 857
HEAPPIITOHANAIE.......eeeeeeeeee e 858
HEAPREAIOC ...t e e e e 859
HEAPSNUTTIE ... e e e e e e s e e e eeens 860
[[T 10 ST . 861
HEAPUNIOCK ...ttt e e e e e e e e e e e s 862
[[T Vo LAY 863
o 0 PSSP 865
0T 1 Tod 0V P 866
001=T 001000)V TP PPT S UPPRTRN 867
101700 1T PP PPPPPPTPTR 868

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

XXVi Table of Contents

=T U PP PTRPPTRPPIN 869
[0 11V = 0 Ao (o 871
D11V =T U@ o =T o = 873
[1=V PSPPI 874
1T 018 72N o oo o [PPSR 875
Lo T8 7o o N I 876
LT aTUT ST o 1 o 878
LT T8 T ol 880
1= 18] = o USSP 881
L LU oV 882
MENUGEITOPREUET ... e e eens 883
MENUITEIMDET ...t e e e e e e e e e s s bbb e eeeaeens 884
MENUKEBY ...ttt e e e e e e e e e e et ettt et e e et e e s ee s ee b n e e nn s 885
11T 18 o = o PSSP 886
IMEINUNEBW ...ttt ettt e et et e e ettt e e e et e e e e e e e e eab e e eeba e eeeennnns 888
11T 18 PRSP PPPPRRR 890
= 18 1@ o P RURPPPUPT 891
Y =T U o] o 18] o PP UUPPPPTPTR 892
1T a1 ST U] 61 = L P PP OPPPPPPPPIS 893
MENUTOPREUET ... e e e eeens 894
L LUl I T o IS T=1 1= o R 897
[IOl I 0 1] = PP 898
[2Lo] o1UT 07 ANo [0l W= 899
[0 o10] o] =7=To 1o H TP PP PP PPPPPPPPPRY 900
[0 o 10T 0] =7=To 1] 5 o 1RSSR 902
(0] o0 o1 @4 1= - 903
POPUPDO. ...t e et 904
0] 010 011N L PP 905
POPUPTEXL ...ttt e e e e e e e e e e e et e ettt et e e e e e e e e nn e n s 906
@1V =T o TVl o] 0 1ST=] L= od o 907

MOdE SCrEeeN SEIINGScoiiieeeiiiiie e e e e e e e e et e e e e e e e e eeesannnnnes 909
MO _CUITENTOPTIONS ...ttt e reeeeeeas 911
[(@ o [T =1 (@] o] (o] 1= 912

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Table of Contents XXVii

OpPerating SYSTEIMccoiiiiiiiiie 913
EV _CAPIUIEEVENLS ettt e e e e aba s 915
EV_defaultHANAIE!veiiiieieee e 918
Y o = o PP 920
Y (=T (o (=T o= 11 a1 (T o T 921
=TT T | =T o | 922
EV_SEICMACKNECKiiieieece e 923
EV _SEICMUSTALEeiiiiiii ettt e e e e e e e e e e e s 924
EV _SEFKEYSIALE ... et e et e e e 925
Y= L 1Y o] o PP 926
EV_SUSPENAPAINTINGeeiiiiiiiiit et e e e e eeeas 927
Y S/ (o] o 928
EX_getBasecodeParmBIOCKooiiiiiiiiiiiii e 929
FL_getHardwareParmBIOCKuuiiiiiiiiiii e 930
NANAIERCIKEY ...t e e eaeeens 932
NANAIEVAILINKKEYvviiiiiiiiiieeee ettt e et e e e e e e e eas 933
LOC_FOrMEAIDALEcoeiiieiiiiiiitittee ettt et e e e e e e e s e eeeeeeeas 934
LOC_getLoCalDateFOrMAL. e et e e e eeas 935
@O (o Tor=1 AV s (o]] B 7= = 936

Program 1/O SCIEEIN ... 937
Lo T o o 1 939
(o3 9o 0 1] o TSP 940

Y0 A= PP PP P PPPPPPPPPPPPPPPPP 941
TS g o2 | = SRR 943
01U ES] I 0741 {0 1 944
PUSN_NSOIVE ... e e e e e e e e 945
0TV] =Yo7 R 946
PUSIL_ZEIOS ..ttt ettt e e e e et e e e e e e e 947

SHALISTICS ettt e e e e e e e e et r e e e e e e e e e ae s 949
CMA_SNOWSTAL. ... e a e e e 951
10 o = 1 o [o] 1 1 o H TP PPPPP P TPPPON 952
(@15 = 11| o PR 953
5] €= 11 =1 o [0 [PPSR PP PPPRPPPPRRRPPON 954

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

XXViii Table of Contents

] =L T OSSP 955
SEAESTANT . e e e e e e e e e e e e e e aeeee 956
STALUS LINE ... 959
ST NGO et e e e e e 961
ST BUSY e et 962
ST rASEHEIP. . 963
Y R (0o 1= R 964
ST _NEIPIMS et e e e e e 965
ST _PrOQIrESSBA ...t e ettt et e e e e e e e 966
S B oL (0 1o | (=S1SY B] 1T 967
ST _ProgreSSINCIEIMENTuueiiee et 968
ST _ProgreSSUPAALEuuuueiieii e 969
ST _rAUONIY ...t e e e 970
S IS e 971
(o3 10101 1 USSR PPRPPPPPRN 973
L TS 1T o] o] =1] 974
(S 1Y o] o<1 o Lo F 975
L= T o | 976
0T 0 Tod o o 977
LT 0 018 (o0 0] PP PPPPTPT 978
01U] 1 o 0 =T 979
O TUES] T 11 1 o T 980
18£S o T o] o TP PP PP PPPPPP 981
OV TS (g (O T =4 SR 982
10 I (] o TP PP P PP PR TPPPPPN 984
0TV L] T4 | GO 985
] 0] 1] 1 PP P PP PPPPPPPRTPN 986
] [oF- | PP TP PUPPPPPTTRRUPIN 989
11 (o] | SO P PP PPPPRPPPRTPN 990
5] (11 1] PP PUPPTTRN 991
L] (0)Y PSP 992
] (03] 0] o TP UPPTTRRRN 993
L] (1011 0] USRS UPPPPPPPRRN 994

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Table of Contents XXiX

5] 1111 o SRR 995
L] ([0 | SO U U URURPPPPPPPPPPPTPN 996
] 1 0131 0 o TP SPTPPPTRRIN 997
L3 1 o3 0)Y P 998
1 0] o] 1 GO P PP PPPPRPPPRRTPPN 999
L] 1 o] o | R 1000
LS 157 o] o U SPPPPRY 1001
] L] 1 PPN 1002
] 1 0] TP TP PPPPPRPRRY 1003
XRSHINGPIN et e e e e e e e e e e e e e e e e e s anneed 1004
Symbol Table ULIItIES ... 1007
AdASYMTOROIE ... e reesrreaaaaens 1009
DIEISYIM . ..ot e e e e 1010
FINASYMINFOIAEY ..., 1011
(0] 0 =T Y (o USSP 1012
o] [0 [T £ @0 11 | o | O PPRRRRRPPRORY 1014
(0] [0 =T O | 1015
(0] 0 =T 15) USSP 1017
(o] [0 [T 4 1 T PP PPPPPPPPPRRPPPPOPIY 1018
0] [0 =T = 1 U U 1019
(0] 0 =T (@ o T 1020
0] [0 =T =T o F= U = S 1021
[571 41 SRR 1022
MBKEHSYIM ...ttt e e e e e e e s ettt e e e e e e e s e a bbb e neeeeeas 1024
T8£S o =1 {0] o S PEERRPRY 1025
oW] TIE=T=3 10 Lo ISR 1026
RESEISYMIFIAGS ...t e e e e e 1028
S T=] (@] O POPPPPPPPPPRPPPPY 1029
Y1 07 AN o SO PRPERPRPY 1031
SYMIDEL ...t aaaaaaaaaaad 1032
SYMEFING .o et e e e e e e et e e et r e e e e e e e e e e e 1033
SYMEINARIIST ..o e e e e e e e e e eaaaaaaad 1034
SYMFINAFOIAEIMAME ..o 1036

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

XXX Table of Contents
SYMEINAHOME ...t e e e e e e e 1038
YY1 T T 11 VT o 1R 1039
SYMEINANEXE ...t e e e e e e s s e e e e e e e e e e e s nnnees 1041
SYMEFINAPTEY ...ttt e e 1042
VarCreateFOldEIPOPUP.uu e e e e e e e 1043
RV = T =T o || PP 1047
RV 1] (o] (RSO UOUPPP PP PPPPPPPRPPPPI 1049

=3 =To 1] o [P PP PPPRPPPPPPPPPPPN 1051
(@8 S (=Y (o = SRR 1053
(012 =T o] F= Tod S N = [1054
I = o o PP 1055
LI = = 0 1P 1056
I = o o U PSR PPP 1057
TE _NAnAIEEVENL ... eeeereeasreeaaraanns 1058
TE_INAICAIEREAUONIY ...t e e 1060
TE _ISBIANK ... e e e e e e e e e e e e e e e 1061
LI = 0] o= [PPSR PPPPTTPPRPPPPIY 1062
B I = o] 1= | b= o PSRRI 1065
LI R 0= (S 1= PSPPI 1067
QI = (=T0] o= o OO PPPRPPPOPPPPPPPY 1069
QI S (=T0] o1=T] o F- V] o [PPSR 1070
I =T = o PP 1071
TE _SHIINKWIAP ... e e e e e e e e e e e e e e e e e e et e e e e e e eeesreeraraeens 1072
TE_UNTOCUS ..ttt e e e e e e e e e e s e bbb r e e e e e e e e e e e ann 1073
B0 PP UPPUTRRPPPPPN 1075
(@ 1T =T I T O EEPPPPR 1077
O S REGISTEITIMIET ...ttt e ettt e e e e sttt e e e e e e e s s s bbb e e e e e e e e e e e e e s annnnnnnees 1078
OSTIMEICUIVAL ...ttt et e e e e e e e e s eeaaaaeeeeeeennnnnneees 1079
(@ IS 1 1T = o1 (= 1080
(@ IS 11T =] = T g R 1081
TOKEN OPEIALIONS.....couiiiiiie e e e e e e e e e e e e e e e e e aa e e e e eaaeeeens 1083
(o= =Y/ L ST PPPPPPPPPPPPPPPPP 1085
(1] 1= T 1 1 (OO UUPUUPPTTRRTPUPPPRRTTR 1087

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Table of Contents XXX

N [T o \ VI 10 1 1=« USSP 1088
N[(01 = 0174 TR 1090
PUSHN_PAISE_TEXE ... eetieiiiiii e ettt e e e e e e st e e e e e e e e e e 1091
L0 1TSS SUUPPPPUPTRTR 1093
AB_getGateAITAYVEISIONcceeeiiiieiiiieiiittiiiite s e s s s e e s s e e e e e e e e e aaaaaaaaeaaaeeeeeeeeeeeeeaeens 1095
Y = T o] (0T Lo RSP PP PP P PP TPPPPPPPPPPPPPY 1096
AB_ProANaAmMIB.... ..o e e e e e e e e e e et e et e e ————— 1097
AB_SEBIMO ... e e e enens 1098
= o P PPPRPRPRR 1099
Lol 00T I o111 o] o] J RSP PPPPPP 1100
0 RSP PPPRPY 1101
[o 1= 1A o PSSP 1102
o111 O 0 SRR OPPPI 1103
HTOEST ..ottt ettt e e et e e e e e et e e e e assta e e e e s nseeneeeaannteneeeaannneeend 1104
= T = 1 R 1105
= o 1RSSR 1106
o P PUUPRRR 1107
N [T T 5] 7= Vo] USSR 1108
5] 110 o PP T PP PPUPPPPPPPPPPPPPP 1109
L] 11 (e) SRR 1111
WWVOTAINLIST ..ttt e e ettt et e e e e e e e s e st raneeeeeeeeeeeaanns 1113
Variable Name UGSuuuiiiiiiiiiiiiiiiiii e 1115
CheCKRESEIVEANAIMEiiii i e e e e e as 1117
CRECKSYSFUNC ...ttt a e e aeaas 1118
HSYMEIONGIME. ... e et e e e e e e et e e e e e eeabaanns 1120
(L= L= 1 0] L= TSP 1121
S 1 1o 1 01 1122
S LSV | 1123
TOKENIZESYMNAIME ... oo e e e e e e e e e e e e e e e e e e eeeeeeeeaeens 1124
TOKTOSIIN . eeeeeeeie e e e ettt e e e e e e e e e e e e s e e e e e aaaeeeeessannsntasneneeeeeaeeens 1125
RV Z= L= 1] L= Y 1127
Lo 100 (@1 =] | SRR 1129
Lo T = Tod 011 1130

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

XXXII

Table of Contents

(o3 0o [i00] 0) 1AV T QrR PP TP PP PPPPPPPPPPPPPPPPP 1131
CMNA_AEIOIA .. e 1132
Lo 0o 0 =1 V= T PSP 1133
(o3 2o [(o od G PP PPPPRPP 1134
(o3 0o [10101V =3 - | PP PPPPPPPPPPPPPY 1135
Lo o [T2, {0 o 1136
(ol 00T I (=T 0= 1o 1= TS PP 1137
Lo 0o 0 [>T o o1 1Y PP 1139
CMNA_UNIOCK e aaees 1140
= (0] =11 I LS EURRR S SPOPP 1141
o1V g TE: (11T [1 1 L=1 oL RSP 1142
WVINOOWS ... 1143
CalCBIIMAPSIZE ...ttt e e e e e e e e e e e e 1145
DIraWWINBOIUET ...eeviiiiee ettt e e e e e e e e s e e e e e e e e e e e e e e b e eeeeaeens 1146
oL o =T o U 1147
MEKEWINRECTeeiiiiiiee ettt e e e e e e e e e e s st e e e e e e e e e e e e s nnnnneeeeeeaeens 1148
Yo g 10 1L o 1149
Y= 01T/ 1 4 o 1150
WWINACHVALE. ...ttt e e e e e ettt e e e e e e e e s s s bbbt an et eeeeaeeeeaaan 1151
LT i PSS UURR PSPPSRI 1152
WINBACKGIOUNG ... eeeeeens 1153
WINBACKUPTOSC ...ttt e e e e e e e e e e e e 1154
WINBEQGINPAINT ... eeaaeaaens 1155
WINBIMAPGET ..ot e e e e e e s s s e e e e e e e e e e aaan 1156
WINBItMAPPUL.oeiiii et e e e s s e e e e e e e e e e s e e nnnbranneeeeeeeeens 1158
WINBIIMAPSIZEo et eeeeeeeeaaens 1159
WINBItMAPSIZEEXL ...t e e e e 1160
{71 o = T PP PPPPPPPPPPPPR 1161
WINCRNAIXY oottt e et et e et e e e e e e e e s s st eeeeaaaeeeeesessnnssrnneeeeeneeens 1162
WWINCIOSE .ttt ettt ettt ettt e e e e e e e e sttt et e e e e e e e e s s s nbbbaneeeeeeeeeeeaaann 1164
LY T T | USRS 1165
WINDEACHIVALEceeeeiiiiiiiitiiiieee ettt e e e e e e e e ettt e e e e e e e e e e s bbb anneeeeeeeeeeeaanns 1166
WINDUPSTAL ...ttt e e e e e e e e s st n e e e e e e e e e e e e 1167

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Table of Contents XXXIil

WINEIIPSE ...t e e e e e e eeeee e 1168
WINENGP@INT. ...t e s r e e s e e 1169
LY T T PSSR 1170
WINFIITHANGIE eeeeseeaaraanns 1171
WINFONE L. e aaaeaaeeaaees 1172
L YT T = o o | PRSPPI 1173
WINHIAE ...ttt e e e e e e e e s e e bbb e e e eeeeaee e 1174
WWINHOIME ...ttt et e e e e e e e e s e e e e e e eeeeens 1175
L1 = PP PP PP PP PP PPUPPPPY 1176
WINLINEEXL ...ttt e e e e e e s r e e e e e e e e e 1177
WINLINEREL ...t e e e e 1179
L YT I T I SRR 1180
WINMOVEREN ...t e e e e 1181
WINIMOVETO .ttt et e e e e e e e e s e e e e e 1182
LT o1 o PP PP PPPPPPPPPPPPPPPP 1183
WWINPIXGEL. ...ttt e et e e s e e e e 1185
L YT T b= PP 1186
WWINRECT ...ttt e e e et e e s et e e e s e e e e e e 1187
WINREIMOVE ..ottt e e e e e e e e et e e e eeee e 1188
WINREOPDEN ... e e e e e e e e e e e e e e e e e et e e e et e e e eeeeeaeasrenaaraaens 1189
L YT ST o] USROS 1190
WINSCIONV .ot e e e e e e e e e e e e e e e e 1192
L1 PP PP TP PPTPPPPPPPOPPRPY 1193
L YT 1 9 USSR 1195
WINSIEXY WD .. eeeeaaens 1196
WINWIAEN ... a eeeeeees 1197
Appendix B: Global Variables.............ccoooviiiiiiii e 1199
AlGEDIa ULIITIES ... e e eeeeeees 1203
ARD Nt COUNL ... eeeeeeeesseaereeraranens 1203
F Y o T (== U oo 11 o | PP 1204
N[oo 1 o USSR 1205
NG_SUCh_that INAEXuueiiiiiiiiiiiee e 1208
N (o] = 7= (o | USRS 1209

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

XXXIV Table of Contents

Y 0] 0 PP 1211
Y= o] o NPT UUPPUPTTORPUPPPTPPTN 1211
Y= o] o = PSPPSR 1212
BV _APPSIAE. ... 1213
Y o U (=] 117 o o PSSP 1214
A U T T g e Vo] IO P EPP PP PPPPPPPPP 1215
(@@ I 16517 O = O EEPUPRP 1216
OO _SUPEIFTAIME ..t 1217
FLO AT T A e ettt e e e e ettt e e e e e et et e e e e e eennaaans 1219
Y = (o) PP PPPRRUPPRR 1220
3157 o] = 1221
(O 0 ol U =10 £ = 1 = R 1221
SCIRECT. ..o 1222
ErTOr HaNA NG - 1223
LT [PP 1223
EV_ITOICOUE. ...ttt e e e e e e e e e s s nnees 1224
ESTACK ULIITIES ... 1225
DOTIOM_ ESTACKviiiiiiiiet e 1225
ESTACK _MAX_INUEX ...ttt ettt e e st e e e e e e e s s bbb e e e e e e e e e e e e e annns 1226
100 o T =11 c= ox PP PSRPRP 1227
[o] TN 1Y/ =T oYU 1229
FIASRMEMOIYEND ...cooiiiiiiiii e e e e e eee s 1229
GrapPhiNg ..o 1231
OF_ACHIVE, O OTNeT ... e e e e e e e e e e e e e e e e e e e 1231
[0 g =T 1= TP PPPPPPPPPPY 1241
KEYDOAIT ... 1243
OSFASTAITOWS ...ttt ettt e e e e et e e e e e e e s e b e e et e e e e e e e e s s nannnnrees 1243
OSMOUKEYSTALUSeeeeeeeeieee ettt e ettt e e e e e e e s s bbb e e e e e e e e e e e e nnnnnneees 1244
[0 o | PSP PRRPPPPPPPPPIN: 1245
Lo [= £ PSPPSR 1245
L0 = {1 = PRUSRRTPPR 1246
1Y o TP URUPPPPPRRPRN 1247
[[0 T= 1 (0] [a0 = PP PP PP PPUP PP PPUPPPPPPPPIY 1247

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Table of Contents XXXV

L[0T Lt A 0 (= PP PP PPPPPPPRPPPPPPIN 1248

L (OF Lt o) [T [R 1249
FIOAEHAITINGEX ...t e e e e 1250
FIOAIMINUSLINGEXeeiieiiiiiie ettt e st e e e e e nnne e e e 1251

e (0T 11 0o [PRUPS 1252

T 1T 1= (0] 1 o (= PRSP 1253

T a1 C=To 1T g A 1 o [PSP 1254

1 1C=To =T 074 | o o [PP E PP P PP PP PPPPPPPPPN 1255
INEEGEIMINUSLINGAEXcoiiiiiiiiieeeeeee et e e e e e e e eeeeeaeesreeraaerannanns 1256
MOdE SCreeN SEHINGSccoiiieiiiiie e e e e e e e e e e e e e e e eeeeannnnn 1257
1Y (@ 2 o] o 10 o PP ERPPPPPP R PPPPPPIY 1257
OPErating SYSIEIM e e e e e e e e e e e ee e as 1261
Y 1= T 1= SR PR 1261
AL STICS .o 1263
L 14 12 1263
STALUS LINE <.ttt e e e e e e e e e e e e e e e e 1265
Y =16 L PO PPPPR PPN 1265

S IS e 1267
RE ettt ettt ettt ettt ettt 1267

LI 1= PP P PP PP PP P PP P PPPPPPPPPPPPPRPIY 1269
FITEYIMSECTIC ...ttt e e e e e e e e e e e e e 1269

(1 [TSSO PPPPTRTRPPPPPPN 1271
REICASEDALE ...ttt 1271
REIECASEVEISION ...t e e e e e 1272
APPENTIX C: IMBCTOS ...ttt ettt e e e e e e e eeeeanans 1273
Character Classification / CONVEISIONccoviiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeee 1275
(K572 1 0 18] PP PP R PPPPPPPP PRI 1275
(K572 1] o = PO PPPPRRTPPPY 1276
(K572 E{ o PP P PP PP PPPPPPP PRI 1277
[K5102) 1 1 PO PPPPPR ORI 1278
L5102 0 1 1279
150 Lo T 1280

(50| (=TT TP PPPPP PR PPPPN 1281

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

XXXVi Table of Contents

151 [0 1= PSSP 1282

1Y 0] 1 PP PUUPRPPR 1283
K]0 o] 0= PP PPPP PP PPPPPPI 1284

100 = (=1 o] | USRS PPPPPPPRPP 1285

100] (o)1= PP PPPRPOPRRPP 1286
1£0] 8] o] o1 S TP SUPPPPPPPRRPPPPY 1287
917> [T USRS 1289
D[]\ o) 1o TP UPPPP S PPPPPPPPPS 1289

ErTOr HaNA NG - 1291
ENDFINAL ...ttt sttt ettt s s sesesesenas 1291
ENDTRY oottt ettt ettt s et a et et ettt es s s s s seese s et et et e s et eses s nssseaeseseeas 1292

ER INIOW ... ettt ————————————————— 1293
FINALLY .ottt sttt st es e 1294
ONERR ..ottt ettt ettt ettt e et e s ettt et n s s et et et et et s s s s nsean, 1295

TRY ottt b bbbttt bbbttt et et s 1296
OPEratiNg SYSTEIM ..oiiiiiiiiiiiiiiiiiii ettt et e e e e eee e e e e s eeseeseeeeneees 1297
Access AMS_Global Variables...........ccuiiii i 1297
Appendix D: TI-89 / TI-92 Plus “Small” Character Font| 1299
Appendix E: TI-89 / TI-92 Plus “Large” Character Font| 1307
Appendix F: TI-89 / TI-92 Plus “Huge” Character Font 1317
Reference List — System ROULINESceviiiiiiiiiiiici e 1329
Reference List — Global Variables ..o, 1351
Reference LiSt — MaCIOS........ccuuiiiiiiiii e 1355

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Table of Contents XXXVil

Figures

Figure 2.1: AMS EVENt HANAIETcooiiiiiiieeeeeeee s e s eeeeeeeaaaaeas 5
Figure 2.2: AppliCatioN/OS INTEITACEueiiiiiiee et e e e e e e e e e e e s 6
Figure 3.1: System BIOCK DIAQIaImcouiiiiiiiiiiiiiiiii e r e e e e e e 7
FIQUIE 4.1 MATH MENU. ... e seeeesrerrraraan s 16
FIQUIE 4.2: CHAR IMEINU....ciiiiiiii ittt e e et e e e e e e e e e e e eeeeeeees 16
Figure 4.3: ADATOMENU SCreEN SNOLccoiiiiiiiiiiiiiiicr s eaeear e 17
Figure 4.4: mPOP-UPTESE SCIrEEN SNOLcoviiiiiiiiiie e 17
Figure 4.5: OverwriteDIlg Dialog Box from EXample ... 19
FIQUIE 4.6: AMS FONESccoiiii eeeeeeeearaaa s 19
Figure 4.7: Example Using the A_REVERSE AUNDULE.........ccooiiiiiiiiiiiiiiee e 20
Figure 4.8: Example Using the A_ SHADED AttribUteccoooeiiiiiiii e, 20
Figure 6.1: Example of ASM Stack MEMOIYccuiiiiiiiiiiice e 28
Figure 7.1: Flash Application File FOrMaLtuuuiiiiiiiiiiiiiii e eeee e 31
Figure 7.2: Application RAM and Flash USagec.ouviiiiiiiioiiiieeeeee e 38
1o UL ST i T] T Y o] o = 0 = U 60
Figure 7.4: RedireCted APP FramB........oooiiiiiiieeee s s e e s eeseseessreaaaae 61
[T [0 = S 0 A OF= 1 =1 (o o [P PP OUPTPPPPPP 67
Figure 8.2: Catalog Help DIalOg.........oovvviiiiiiiiiiiiiiiee s eeaarerannee s 67
FIQUIe 8.3: USEI PIOGIAM ...coiiiiiiiiiiiiittt ettt et eeeeeees 68
Figure 8.4: User-Defined Catalogccoeuuuiiiiiiiiiiiiiiiies s e e e ee e s 68
Figure 8.5: Help Dialog for User-Defined Catalogccccouueiiiiiiiiieeeeeeeeeieeeeeeeeeeee 68
Figure 11.1: WINAOW REQIONS ...ttt e e e e e e e e e s s eeeeeeaeeeas 103
Figure 11.2: Screen Shot from Test Menu EXample ... 117
Figure 13.1: Token Representation of VarName A23456............oooocuiiiiiiiiiiieeeeeeiiieeeeee s 135
Figure 17.1: Upper Left Corner of Graph SCre€n.........cccviieiiiiiiiiii s 190

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

XXXVill

Table of Contents

Figure 18.1:
Figure 18.2:
Figure 18.3:
Figure 18.4:
Figure 18.5:
Figure 18.6:
Figure 18.7:
Figure 18.8:
Figure 18.9:

Figure 18.10

Figure 18.11:
Figure 18.12:
Figure 18.13:
Figure 18.14:
Figure 18.15:
Figure 18.16:

Figure 18.17:

TI FLASH Studio HOME SCIEEN ... 202
TI FLASH Studio MENU Barccoiiiiiiiiieiiceeeee et 204
TI FLASH Studio TOOIDAT.......ciiiiiiiiiiieeeiie ettt 204
FlE IMBINU ...t e e e e e e e e e a e 205
EQIE IMIBINUL ..t e e 206
VIBW IMBINU ..ottt e et e 207
T S (=T £ 208
Y r= 1L LSRN T] (T 209
LAY (o PP UPPRRRR 210

S PIOJECE IMIEBNUL ... e e e e e e e e e e e e e e e 211
DEDUG MENU ..t e e e e e e e e e e 212
BreakpointsS SUDMENUooiiiiiiiii s eeeaeaaenes 213
SIMUIAEOT IMEBNU. ...t e e e e e e e e e e e 214
LINK IMIEIU ..ttt e e e 215
WINAOW MENU ... eeees 215
HEID IMIBINU L.ttt e e e e e e e s e e nnenee 216

NEW PrOJECE SCIEEN ... oo eeaeeees 216

TI-89 / TI-92 Plus

Developer Guide Not for Distribution Beta Version January 26, 2001

Table of Contents XXXIX

Tables

Table 3.5: DBus Configuration REQISIENccccoiiiiiiii e 12
Table 4.1: Available Character AttrDULEScooiiiiiiiii e 20
TabIE 4.2 CRAIACIET SBL......uiiiiiiiiiiii et e e e e e e e s s r e e e e e e e e e e e s nnnnennnes 21
Table 6.1: AMS C DAt@ TYPES ..vvuuruutiiuiiiiiiiiieeiieeeee s e e eeeeeeeeaaeeeee e ettt et eeeaeeaeeeeaeerrrrr s 27
Table 7.1: Flash Header FOIMAL..........coooiiiiiiiiiiiie et e e e e e 32
Table 7.2: Application Header FOrMaLcccoooiiiiiiiiiiii s 33
Table 7.3: Internal Names of Built-in APPHICALIONScooiiiiiiiiiiicccee e 34
Table 7.4: Relocation Map FOIMAL...........uuiiiiiiii e 35
Table 9.1: Keypress TranSIAtiONScoooiiiiiiiiiiiiiiiiee e e e s e et e e e e e e e e s e s aneeaneeeeeeeeaeeeeeannes 89
Table 9.2 KEYPIESS ACLIONSuueiiiiiiiieeiiieiitt ettt e e e e e e et e e e e e e e e s s st e e e e e e e e e e e s e annnnnnee 90
Table 11.1: Screen vs. WINAOW COOMTINALEScoiuriiiieiiiiiiiee et 101
Table 11.2: Dialog Flags and Corresponding FieldsS.............cccuiiiiiiiiiiiiiieeecee e 113
Table 11.3: Call Back Function RetUrn VAIUESccoiiiiiiiiiiiiiiiec e 114
Table 14.1: Data Tag VAIUESooiiiiiiiiiiiei ettt e e e e e e e e e 146
Table 14.2: Data Object for a Non-Negative or Negative INtegervvvveiiiiiiiiiiiieeeeeeeeeeee, 147
Table 14.3: Data Object for a Positive or Negative Fraction...........cccccccceeieeiiiiiiiiiiieeeeeeeeeeeeee, 147
Table 14.4: Data Object for a Floating-Point NUmMbBer ... 148
Table 14.5: Data ODbJECt fOr @ LIStuuuiiiiiiiiii i 148
Table 14.6: Data ODJECt fOr @ MaLIIXcoiiiiiiiiiie et e e 149
Table 14.7: Data Object for a Data Variableoooirrrri e, 150
Table 14.8: Data Object for a Text Variable............ooo e 151
Table 14.9: Valid first characters for a Text Variable Data ObjecCt.............ccccvvviiiiieiieeeiiiiis 151
Table 14.10: Data Object for a String Variable ... 151
Table 14.11: Data Object for a Graph Database ... 152
Table 14.12: Data ODbJect fOr @ PIC ... 156

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

x/ Table of Contents

Table 14.13: Data Object for a Tokenized Program or FUNCHIONooooiiiiiiiiiiiieees 157
Table 14.14: FIAg 1 VAIUEBSoeeeeieiiieeiieee ettt e e e e e e e s s aennaee 158
Table 14.15: Data Object for a Program or Function Stored in TeXt......cccoeeeviiiiiiiiiiieeeeeeiinnnnn., 159
Table 14.16: Data Object for Third Party Data............ccoouiiiiiiiiiiiiiiiieeeeee e 160
Table 14.17: Data Object for an Assembly Programouiiiiiiiiiiiieeeeeeeeeeeee, 160
Table 15.1: Examples of Polish Representations ... 162
Table 15.2: Tagged Integer EXAmMPIES.....ccooiiiiiiiiii e 164
Table 15.3: Tagged Fraction EXampPIes ... 164
Table 15.4: Variable Name EXamPlesouuiiiiiiiiiiii e 165
Table 15.5: SYMDOIIC CONSIANTSuuuiiiiiiii i e 166
Table 15.6: Examples of Single Argument Functions and Operators........ccccccevvevieeeeeeeeeeeeeeen, 167
Table 15.7: Examples of Functions of TWO ArgUMENESeevvviiiiiiiiiiiiiiiiinnnnenieeeeeeeeeeaeeeeens 167
Table 15.8: Examples of Arithmetic Operations and the Store Operationcceeeeeeeeeeenn. 168
Table 15.9: Examples of Other Binary OPerationsooevvveuriiiiiiiimiiiiisissneeseeeeeeeeeaaaaaaas 168
Table 15.10: Secondary Tag EXamPIes.......coooo i a e e 169
Table 15.11: Command Tag EXamPIEsuuiiiiiiiiiiiii e 170

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

1. Introduction

1.1. Purpose of this Guide

The purpose of this guide is to provide the application developer with a thorough
understanding of the ideas and concepts necessary for application design on the
TI-89 / TI-92 Plus Operating System (OS). This Operating System is referred to
as the Advanced Mathematics Software (AMS). Key components of the AMS
such as event-driven architecture, memory management, and the user interface
are discussed in detail. Sample code is provided for developers of both Assembly
Language Programs (ASM) and Flash applications.

1.2. Chapter Layout

Chapter 2, The 68000 Tl AMS Operating System Overview, introduces the
event-driven architecture of the AMS. It also discusses the three types of
applications a user may develop: TI-BASIC programs, ASMs, and downloadable
Flash applications.

Chapter 3, The TI-89 / TI-92 Plus Hardware Overview, provides block diagrams
and tables that include information on memory, interrupt vectors, and ASIC
registers.

Chapter 4, User Interface Overview, provides brief explanations and examples of
windows, menus, toolbars, pop-ups, dialog boxes, fonts, and the status line.

Chapter 5, Flash Applications vs. ASM Programs, presents a side-by-side
comparison of downloadable Flash applications and Assembly language
programs. The limitations and advantages of each are emphasized. This is a
good reference for ASM developers who are considering Flash application
development.

Chapter 6, Assembly Language Programming Overview, discusses the general
ideas and concepts necessary for ASM design. A sample ASM program is
provided.

Chapter 7, Flash Application Layout, contains detailed descriptions of the crucial
components and physical layout of an application. Sample applications are
provided. Also included are instructions on how an application can take
advantage of TI-BASIC extensions, a shared-code library, and language
localization.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

2 Chapter 1: Introduction

Chapter 8, Integrating a Flash Application, discusses areas of the operating
system that an application may choose to integrate itself with such as the
catalog, the mode screen, and VAR-LINK. More details are provided for
interfacing with TI-BASIC. This chapter also provides tips on optimizing code
space and identifying the active AMS version.

Chapter 9, Application Control Flow, contains vital information for the Flash
application developer. The AMS event-driven architecture is further explained,
complete with a detailed list of commands an application can expect to receive.
Information on keyboard events and menu processing can also be found in this
chapter.

Chapter 10, Error Handling, describes the AMS implementation of error handling.
It includes explanations of how an application can throw errors, catch errors, and
clean up when an error occurs.

Chapter 11, Creating the User Interface, gives in-depth detail about the user
interface components introduced in Chapter 3, User Interface Overview. A
sample application which illustrates the use of these components is provided.
The resource compiler is also discussed in this chapter.

Chapter 12, Basic Text Editing Facility, describes how an application can use text
records to get information from the application user. Sample code illustrating the
use of the text edit facility is provided.

Chapter 13, Memory Management, provides explanations of dynamic data
storage, application data storage, and variable management.

Chapter 14, Data Types, defines the structure of the twelve data types supported
by the AMS.

Chapter 15, Expressions and the Expression Stack, contains information
important for applications that use the math engine for numerical or symbolic
analysis. The internal representation of expressions is discussed in detail and
augmented with examples.

Chapter 16, Working with Numbers, describes the two separate number
subsystems that are built into the AMS operating system. It also discusses the
use of the expression stack for performing numeric operations.

Chapter 17, Graphing, contains a thorough explanation of the Graph application
as well as instructions on how graphing can be incorporated into a downloadable
application. Two graph mode, graphing functions, and its usage of screen and
memory are detailed.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 1: Introduction 3

Chapter 18, T/ FLASH Studio™ (IDE) Overview, is the users manual for

Tl FLASH Studio. It provides information on PC requirements, the installation
process, and the interface. It also contains an example that steps through the
application development process.

1.3. Conventions Used in this Guide

Bold text indicates the name of a function, macro, or global variable that is
described in the System Routines (Entry Points) section.

Italicized text indicates the name of an input parameter. It is usually associated
with a function prototype.

The Courier font is used to distinguish Assembly or C program text.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

4 Chapter 1: Introduction

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

2. The 68000 TI AMS Operating System Overview

The AMS calculator Operating System (OS) implements a classic cooperative
event-driven architecture. The event manager interfaces with the device drivers
to determine when something important has happened such as a keypress or a
timer interrupt. This information is then packaged into an event message and
sent to the application currently active in the calculator screen. An application
reacts to event messages by performing some action such as moving its cursor
or repainting its window. After responding to an event message, the application
then returns to the event manager and awaits the next event. The event manager
puts the calculator into low power mode until another event occurs. This process
is illustrated in Figure 2.1.

/ conm

Decode
event occurs Default
Event ldle > and —
Manager package handlin g

event

l

Application Handle
pp event

does not

com pleted know how

Figure 2.1: AMS Event Handler

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

6 Chapter 2: The 68000 TI AMS Operating System Overview

Many operating system routines are available to the application as shown in
Figure 2.2. The address of the jump table, a table of Operating System entry
points and data structures, is stored in memory location 0xC8. Through the jump
table, applications, and ASM programs can access low-level device drivers, the
event manager, memory manager, symbol table manager, graphical user
interface library, computer algebra system, math package, and utility routines.

; Applications
Event
Manager Jump Table
Graphical Computer
User Interface EPNTRE Algebra
. Manager
Librar y System N
Utilit y
Routines
Low-Level Drlyers: POW(.EI’, LCD, ey HERaEr MathiEackale
Keyboard, Link Port, Timer

Figure 2.2: Application/OS Interface

TI-BASIC programming language provides ease of programming at the expense
of speed and control of every calculator feature. ASM programs are routines
written in C or 68000 assembly language, both of which give the software
developer much greater control over the calculator. ASM programs can be called
from TI-BASIC and executed from the Home screen author line.

ASM programs are generally small (< 8 K for AMS 2.03 and < 24 K for AMS 2.04)
and execute in RAM. They are intended to offer the same speed and efficient
hardware access as Flash applications but as subroutines called from TI-BASIC
instead of fully integrated applications.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

3. The T1-89 / T1-92 Plus Hardware Overview

3.1. Overview

The TI-89 and TI-92 Plus Graphing calculators provide a platform for writing
interactive applications that utilize input, processing, storage, communication,
and presentation. When creating applications, understanding the capabilities and
limitations of the platform are important to creating a good interface to the user.

Pictured below is a block diagram of the TI-89 / TI-92 Plus from a programmer’s

perspective.
Application Specific
Integrated Circuit
(ASIC)
68000 Liquid Crystal Display
Central Processing Unit (LCD)

Random Access
Memory (RAM) Keyboard

Flash]

Read Only Memory (ROM) Dbus Serial Input/Output

Figure 3.1: System Block Diagram

From the block diagram, the specific details of the components are:

* An ASIC, which contains all of the “glue logic” that allows the different
components to communicate with each other, as well as specialized registers
for system control.

* A Motorola 68000 CPU.
e 256 K bytes of RAM.
e 2 MB bytes of Flash ROM.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 3: The TI-89 / TI-92 Plus Hardware Overview

3.2.

» A black and white LCD display (100 lines of 160 pixels for the TI-89, 128 lines
of 240 pixels for the TI-92 Plus).

» Aset-line / scan-line style matrix keyboard.
e Athree line (DO, D1, and ground) serial 10 interface.

This chapter describes in some detail the locations that an application may need
to access in order to accomplish a task. For the most part, interaction with the
hardware can be accomplished through the use of specific entry points. To
remain compatible with other applications and future revisions of the OS, the
developer should utilize entry points wherever possible.

Memory Map

Memory for the calculators consists of RAM memory, Flash memory, and
address space within the ASIC. Memory is limited and optimization is important
when developing for these platforms. Additionally, since Flash memory stores the
OS, certificates, applications, and does not have infinite life, more restrictions are
placed on its use.

The OS handles all memory allocation through the heap or file system. See
chapter 13. Memory Management . For reference, the memory map is shown in
Table 3.1.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 3: The TI-89 / TI-92 Plus Hardware Overview

3.2.1.

(Border can vary)*rxss*

data segments

TI-89 Contents T1-92 Plus
RAM
0x000000 Vectors 0x000000
Ox0003FF See section 3.2.1. Vector Table | 0x0003FF
0x000400 User Stack 0x000400
Ox0041FF Ox0041FF
0x004200 OxDEADDEAD 0x004200
0x004203 (Fence) 0x004203
0x004204 Supervisor Stack 0x004204
0x004BFF 0x004BFF
0x004C00 LCD Buffer 0x004C00
Ox005AFF Ox005AFF
0x005B00 System bss and 0x005B00

*xxkx (Border can vary)

(Border can vary)*x****

(Border can vary)****** | Heap *xxkx* (Border can vary)
Ox3FFFF Ox3FFFF
Flash ROM

0x200000 Boot Sector 0x400000

Ox20FFFF Ox40FFFF

0x210000 Certificate Memory 0x410000

Ox211FFF Ox411FFF

0x212000 System Privileged 0x412000

Ox21FFFF Ox41FFFF

0x220000 Operating System 0x420000

*xxxx%(Border can vary)

(Border can vary)rrxss*
Ox3FFFFF

Archive Memory

*eek(Border can vary)
OX5FFFFF

ASIC

0x600000
OX7FFFFF

See section 3.2.1. Vector Table

0x600000

OX7FFFFF

Vector Table

Table 3.1: Memory Map

In order to modify the interrupt vectors, it is necessary to first enable writing to
this region by accessing the system configuration register at 0x600000 (see

Table 3.1).

TI-89 / TI-92 Plus Developer Guide

Not for Distribution

Beta Version January 26, 2001

10

Chapter 3: The TI-89 / TI-92 Plus Hardware Overview

Address 68000 CPU Vector T1-89 / TI-92 Plus Usage

0x000000 | Initial supervisor stack pointer Initial supervisor stack pointer

0x000004 | Pointer to operating system entry point | Pointer to operating system entry point

0x000008 | Bus error Not used

0x00000C | Address error Not used

0x000010 | lllegal instruction Not used

0x000014 | Zero divide Not used

0x000018 [CHK instruction Not used

0x00001C [TRAPYV instruction Not used

0x000020 | Privilege violation Not used

0x000024 | Trace Not used

0x000028 | Line 1010 emulator Error handler

0x00002C | Line 1111 emulator System jump table call interface

0x000030 [(Unassigned, reserved) Not used

0x00005F

0x000060 | Spurious interrupt Not used

0x000064 | Level 1 interrupt autovector Heartbeat timer (keyboard scan)

0x000068 | Level 2 interrupt autovector Key press

0x00006C | Level 3 interrupt autovector One second timer (not used)

0x000070 | Level 4 interrupt autovector DBus IO

0x000074 | Level 5 interrupt autovector System timer

0x000078 | Level 6 interrupt autovector On key

0x00007C | Level 7 interrupt autovector Stack overflow

0x000080 |Trap0-4 System reserved

0x000093

0x000094 |Trap5-8 Not used

0x0000A3

0x0000A4 | Trap 9 —-11 System reserved

0x0000AC

0x0000BO | Trap 12 -14 Not used

0x0000BB

0x0000BC | Trap 15 System reserved

0x0000CO0 [Unassigned / reserved Simple ROM detect constant —
OxFFO055AA

0x0000A8 | Unassigned / reserved Address of system call jump table

0x0000AC Not used

0x0003FF

Table 3:2: Vector Table

TI-89 / TI-92 Plus Developer Guide

Not for Distribution

Beta Version January 26, 2001

Chapter 3: The TI-89 / TI-92 Plus Hardware Overview

11

3.3. ASIC registers
When accessing the ASIC registers, it is important to modify only the intended
bits.
0x600000 System Configuration — Detect stack overflow.
8 7 6 6 4 3 2 1 0

Stack protect
enable.

Table 3.3: System Configuration Register

When Bit 2 is set, logic is enabled that triggers a level 7 interrupt on any write to
addresses 0XE000000 through OxFFFFFF and 0x000000 through 0x00003FF.
This mechanism is used to detect stack overflow without the penalty of a

software stack probe.

0x600004 System sleep / wake-up — Stop the system oscillator to preserve power.

Specify wake-up condition. Interrupt level
required for wake-up.

8 7 6 5 4 3 2 1 0
System [DBus IO | Not used Key Heartbeat
timer interrupt timer

Table 3.4: System Sleep Register

Writing to this register will stop the system oscillator. The system oscillator is
restarted by any interrupt whose corresponding bit is set to one. Interrupts level 6

and 7 always restart the oscillator.

TI-89 / TI-92 Plus Developer Guide Not for Distribution

Beta Version January 26, 2001

12

Chapter 3: The TI-89 / TI-92 Plus Hardware Overview

0x60000C DBus configuration / status (IE = Interrupt Enable)

Control Status
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
AE | LD |[LTO CLE [CAIE| CTX [CRX | SLE | STX | SRX | SLI | SA
Table 3.5: DBus Configuration Register

AE Autostart enable

LD Link disable

LTO Link time-out disable

CLE Control Link error IE

CAIE Control Autostart IE

CTX Control TX buffer empty IE

CRX Control RX buffer full IE

SLE Status Link error

STX Status TX buffer empty

SRX Status RX buffer full

SLI Status Link interrupt

SA Status Autostart

DBus is a three line serial 10 interface; DO, D1 and ground. The following two

registers are used to send and receive data through the DBus port. Reading the

DBus status register resets that register.

0x60000E Link Data — Send / receive data through the link port.
Low High
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
D1Iin | DOIn | D1 Out| DO Out RX / TX buffer

Table 3.6: Link Register

Autostart works in conjunction with the sleep/wake up register. If this bit is set
and bit three of the sleep/wake-up register is set, the system will wake on DBus
activity.

Link disable can be used to allow for direct monitoring of the DBus lines (see
next register). When this bit is set, the state machine and barrel shifter that
decode the DBus protocol and perform serial to parallel conversion are disabled.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 3: The TI-89 / T1-92 Plus Hardware Overview 13

The DBus protocol specifies a maximum bit time of two seconds. Link time-out
occurs if DO or D1 remains low for longer than this time. Bit 13, when set,
disables the link time-out. If this bit is enabled, and DO or D1 remain low for
longer than two seconds after the state machine has started to decode a byte, a
link interrupt is triggered and bit 7 is set to data error.

Bits 8—11 allow for enabling or disabling their corresponding interrupts. Bits 2—7
allow monitoring of the link port. These registers are modeled on RS232
control/status registers; programming serial IO on the TI-89 / TI-92 Plus is
somewhat akin to writing an RS232 handler.

0x600014 Clock configuration — Clock / LCD control.

8 7 6 5 4 3 2 1 0
One second LCD On
timer

Table 3.7: Clock Configuration Register

Writing a 1 to Bit 2 of this register will trigger an autolevel 3 interrupt once per
second. Writing a 1 to Bit O of this register blanks the LCD.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

14 Chapter 3: The TI-89 / T1-92 Plus Hardware Overview

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

15

User Interface Overview

4.1.

The TI-92 Plus has a display of 240 by 128 pixels. The TI-89 display size is 160
by 100 pixels. On both calculators, the display is divided into two regions: the
window region and the status line. The bottom seven lines of the display are
always used for the status line. The remaining lines constitute the window region
which is available to the app. The window region is shared with the app’s toolbar
(if it has one) which is normally in the top 18 pixels of the display of the

TI-92 Plus and the top 16 pixels of the TI-89. The window region will be different
if an app is running in split screen mode (an app is given the size of its window
region when it is started).

The user interface consists of windows, menus, dialog boxes, fonts, and the
status line. An overview of these is presented in the following sections.

Windows

All characters, lines, figures, and images that appear on the display must be
drawn to an open window. Note that menus and dialog boxes open and close
their own windows and that dialog box windows may overlap the app’s toolbar
(dialog boxes are modal so the app’s toolbar is inactive when a dialog box is
active). Window routines exist to:

e Open, resize, and close windows

» Draw characters, strings, lines, ellipses, rectangles, and pixels
» Fill regions (rectangular or triangular)

» Store and recall bitmaps

e Scroll horizontally or vertically

If an app opens a window, that window must eventually be closed. All output to a
window is clipped and will not exceed the window boundaries. An app’s main
window normally has no border but if it is in split screen mode, then it has a
two-pixel border (one pixel thick if not active, two pixels thick if the active
window). Note that by convention, windows that are overlapped on-top of the
main window, such as dialog boxes, have single pixel borders and usually have
rounded borders unlike pop-ups.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

16 Chapter 4: User Interface Overview

4.2. Menus

Menus allow the user to select an item from a hierarchical list of items. There are
two formats: toolbars and pop-ups. Toolbars normally are placed at the top of the
display and accessed with the function keys (even though they may be placed
anywhere including within dialog boxes). Pop-ups “pop-up” over the display and
are not attached to any toolbar. The MATH and CHAR keys bring up pop-ups as
shown in Figures 4.1 and 4.2.

G~ Fi=] Fer |Fa=| Fu=| FE Fh~
Itltun Ur TooTs|h13cbral alc|okher|Framio|cican ue

1 : Humber k [CHAF |

sHhagle []
35Li5t_ k "o .
%;EgﬁFigx ' ZiPunctuation
EiStatiztics » gigpecial o 1)
FiProbability » » lnLernatlona
2lTest k

TYFE OF UZE £+14 + [EMTER] OF [EZC] TYFE OF UFE £%14 + [EMTER] OF [EFC]

Figure 4.1: MATH Menu Figure 4.2: CHAR Menu

Menus can be defined with the resource compiler (static), MenuNew (dynamic)
or both (the core menu is defined with the resource compiler which is then loaded
into memory with the MenuLoad function so that it can be modified). The
following example shows how a menu is defined by the resource compiler (see
the MenuLoad function for an example using this menu as a core menu and
then adding to it). This menu is shown in Figure 4.3.

TOOLBAR AddToMenu, RC_NO_IDS, 0, 240 {
"TOP 1%, 10 {
"SUB 1", 11
"SUB 2", 12

}
"TOP 2", 20 {

}
}

In the above example, the numbers 10, 11, 12, and 20 are menu IDs. A menu ID
is an integer in the range from 1 to 4095 (OxFFF) which can be explicitly
assigned by the creator of the menu or generated by the resource compiler. In
the following example, MID_1, MID_2 and MID_CORRECT will have the values
1, 2, and 3 respectively, as generated by the resource compiler. This menu is
shown in Figure 4.4.
POPUP mPopupTest, 0, O {

"POPUP 1", MID_1

"POPUP 2", MID_2

"SELECT THIS", MID_CORRECT
}

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 4: User Interface Overview 17

4.2.1.

4.2.2.

42.2.1.

1: FOFPUFP 1
FOF I m]

ZISELECT THIS

TYFE OF USE £314 + [ENTERI=OK AND [ESCI=CAMCEL

TYFE OF USE £3+14 + [EMTERI=0k AMD [EXCI=CAMCEL

Figure 4.3: AddToMenu Screen Shot Figure 4.4: mPop-upTest Screen Shot

Menus are limited to three levels (level one being the toolbar or initial pop-up).

Toolbars

The function keys are normally used to select items from an app’s toolbar.
Toolbars are drawn with MenuBegin . MenuBegin also creates a heap-based
structure to hold additional information about the menu — such as checkmark
and enable/disable status. If the user presses a function key, it is passed to
MenuKey to handle the entire menu selection process and the menu ID of the
item selected is returned. Finally MenuEnd is called to close the menu.

There are several functions for dealing with dynamic menus. Briefly they are:

MenuNew — Create an empty dynamic menu.

DynMenuAdd, — Add to or change a dynamic menu item.

DynMenuChange

MenuLoad — Load a static menu created with the resource compiler so that

it can be modified with DynMenuChange and DynMenuAdd .

Pop-ups

There are three kinds of pop-ups which can be used depending on the features
needed: static pop-ups, dynamic pop-ups, and dynamic pop-ups with menu
features (checkmarks, grayed-out). Like toolbars, pop-ups are limited to three
levels with the initial pop-up being the first level.

Static Pop-ups

The simplest use of pop-ups is to define a static pop-up with the resource
compiler and then execute it with the MenuPopup function.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

18

Chapter 4: User Interface Overview

4.2.2.2.

4.2.2.3.

4.3.

Dynamic Pop-ups

Dynamic pop-ups can be created using the following functions:

PopupNew — Create an empty dynamic pop-up.

DynMenuAdd , — Add to or change a dynamic pop-up.

DynMenuChange

PopupAddText , — Basically do the same thing as DynMenuAdd and
PopupChangeText DynMenuChange but for text only.

PopupClear — Empty out a dynamic pop-up so the handle can at least be

reused in case there are other functions, like dialog boxes,
that need to keep the same handle.

PopupDo — Execute a dynamic pop-up (do not use MenuPopup),
returning the item selected by the user.

Dynamic Pop-ups with Menu Features

Static and dynamic pop-ups, as defined in the preceding two sections, do not
have menu features like checking (adding/removing checkmarks from individual
items) and the ability to gray-out individual items. In order to have those features,
there are two additional functions. PopupBegin creates a structure similar to
MenuBegin and returns an additional handle that can be passed to
MenuSubStat and MenuCheck functions. This new handle is then passed to
PopupBeginDo to actually execute the pop-up. If MenuEnd is called with this
new handle, both it and the handle returned from PopupNew are freed.

Dialog Boxes

Dialog boxes provide a consistent method for inputting data from the user. A
dialog box may consist of headers with buttons, text fields, pop-ups or edit fields.
As with menus, dialog boxes can be built statically with the resource compiler or
dynamically. Unlike dynamic menus, dynamic dialog boxes cannot be modified
once they are created.

The routine to execute a dialog box and get back input from the user is called
Dialog . It is passed two arrays that contain the initial and final input for the dialog
box, one for the pop-ups and another for the edit fields. Dynamic dialogs are
created with the DialogNew function and executed with the DialogDo function.
The following example shows how a dialog is defined for the resource compiler.
DIALOG OverwriteDlg, 0, 0, OverwriteCallBack {

TEXT, {DF_OWNER_DRAW, 8, 15}

POPUP, {DF_TAB_ELLIPSES, DLG_DEF_XO0, 28}, “Overwrite?”, OverwritePopup, 0

EDIT, {DF_TAB_ELLIPSES, DLG_DEF_XO0, 41}, “New name”, 0, 17, 18
HEADER, {0,0,0}, “Receive”, PDB_OK, PDB_CANCEL

}

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 4: User Interface Overview 19

4.4,

“ Figcgill ™

*
Overwrite? YES+

Hew Hame. . |

\ LEnters0K (ESC=CAMCEL » |

Figure 4.5: OverwriteDlg Dialog Box from
Example

This example dialog shown in Figure 4.5 contains text drawn by the caller of the
Dialog routine (DF_OWNER_DRAW), a pop-up defined elsewhere in the
resource file (OverwritePopup), an edit field, and a header with two buttons
(which are always placed at the bottom of the dialog box). The symbol
OverwriteCallBack is a user supplied function that interfaces between the Dialog
routine and the user code.

Fonts

There are three fonts used in the AMS: Small (F_4x6), Large (F_6x8), and Huge
(F_8x10). The Small font is used in the status bar and dialog box headers. The
Small font is also used in the dialog boxes and toolbars on the TI-89. Some of
the Small font characters, especially the international characters, are difficult to
distinguish from each other and so care should be exercised when using the
Small font. The Large font is used almost everywhere else, except in authoring
lines on the TI-92 Plus, which uses the Huge font. Figure 4.6 displays the three
different fonts.

Zr1T Fienk (46D
Large tont (&x82

Huge font (Bx10>

Figure 4.6: AMS Fonts

An app can control which of the three system fonts it uses in its own windows.

Characters are drawn to the display based on the character attribute selected.

The character attribute affects how the background and foreground pixels for a
character are handled. This is shown in the following table.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

20

Chapter 4: User

Interface Overview

Attribute Background Horeground

A_NORMAL Unchanged ON

A_REPLACE OFF ON

A_REVERSE ON OFF

A_SHADED OFF Every other pixel on.
A_XOR Unchanged XOR'd with destination.

Table 4.1: Available Character Attributes

Reverse mode is usually used to denote highlighted or selected items, such as in

Figure 4.7.

[Fu:E

Figure 4.7: Example Using the A_ REVERSE Attribute

Shading is used to denote unselectable items. It is often used in menus, as
shown in Figure 4.8.

Fzw

P =aue
) Sl
HE

opd Hs...

F4

Fe* |Fr
Zoom|Trace|Regraph|Math IIIr'nElLuT:r

FE=w

*
EHE
=
=i
=i

L5

+F

TYFE OF USE £3*14 + [ENTERI=OK AW

D IESCISCAMCEL

Figure 4.8: Example Using the A_SHADED Attribute

TI-89 / TI-92 Plus Developer Guide

Not for Distribution

Beta Version January 26, 2001

Chapter 4: User Interface Overview

21

The character set is a modified 1ISO Latin set as shown in the following table.

AMS ASCII AMS AMS/ISO Latin Extensions
MSD || 0 1 2 3 4 5 6 7 8 9 A B C D E F
LSD 0 NULL = SP 0 @ P p |fo T ° A b a)
1 son € |t 1 A Q a q |[B o [* A N a4 n
2 s P " 2 B R b r | ¢ 2 A O a o
3 ex A Jl# 3 ¢ s ¢ s |y o [s A O6 a ¢
4 feor Y s 4 DT d ta wla T A 06 a o
5 ENQ % 5 E U e u |8 E |¥ u A O a]
6 ACK - & 6 F VvV f v |e e ! 1 £ O &= o
7 BELL 1 7 G W g w | i § ¢ x ¢ -
8 BS ! (8 H X h x |6 r v ¥ E @ ¢ g
o e Ay o v v i yh Tloe + & v e u
A LF } * J z j z |¢& X |2 0 E U e u
B = 1T + K [k { n y « » E 0] e a
C FF 0 , o< LoV | m < - d I U i]
D CR n - = M 1 m } |p # -) i Y i y
E A o > N ~ n ~|z =2 [® o« 1 P 1 p
F v / ? O _ o @®|o O } é | R i ¥

Table 4.2: Character Set

“Small” Character Font

Note: For actual character representation of each font, see Appendix D: Tl -89 / TI-92 Plus
, Appendix E: Tl -89 / TI-92 Plus “Large” Character Font , or
Appendix F: TI -89 / TI-92 Plus “Huge” Character Font

TI-89 / TI-92 Plus Developer Guide

Not for Distribution

Beta Version January 26, 2001

22 Chapter 4: User Interface Overview

4.5. The Status Line

An app can write messages to the status bar; but when modifier keys ([2nd], (1],
(+], (aloha], and [&]) are pressed or the battery level changes, the status bar is
cleared of any messages and the modifier status is displayed. The status bar is
also used to show things like the current directory, radian/degree mode, battery
status, and other calculator information as shown in Figure 4.9.

HMAIMW KAl AUTO FLUMC 1430

Figure 4.9: Status Line

The following routines allow access to the status line:

ST _angle — Change the RAD/DEG indicator in the status line.

ST _busy — Turn on/off the BUSY indicator.

ST_eraseHelp — Clear the help status and restore the indicators.
ST_folder — Change current folder in the status line.

ST _helpMsg — Temporarily display a help message in the status line.
ST_readOnly — Turn on/off the lock symbol in the status line.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

23

5.

Flash Applications vs. ASM Programs

Flash Application

ASM Program

Resides in

Executes in

Size

Data segment

Copy protection

APPS| menu

User interaction

protected Flash memory — The
Flash memory occupied by the OS
and applications is protected from
inadvertent or malicious changes.

protected Flash memory — Flash
apps are executed in place, i.e., the
app does not need to be moved to
RAM before it can be executed.

< 4 MB — Flash apps are limited by
the amount of free Flash memory but
can be no bigger than 4 MB.

Yes — The OS allocates a data
segment for each application.
Applications can define and reference
global and static variables any of
which may have an initial value.

Yes — A Flash application can only
be installed in calculators that have a
license for the software. All
calculators come with a
freeware/shareware key which allow
freeware/shareware applications to
be installed without an additional
license.

Yes — Interactive Flash applications
appear on the [APPS] menu.

Event driven — Flash applications
participate in cooperative multitasking
through the OS. The OS provides
default behavior for many of the
special keys such as [APPS], and
function keys.

RAM or archive Flash memory —
ASM programs can be archived but
must execute in RAM.

RAM — ASM programs can only be
executed in RAM. Calculator
hardware does not allow 68000
instructions to execute in archive
memory. The OS makes a temporary
RAM copy of an archived ASM
program before executing it.

< 24 KB — The current version of the
heap manager cannot allocate any
chunk of memory larger than 64 KB.
The lower 24 KB limit is part of the
antipiracy mechanism.

No — ASM programs must allocate
variables on the stack or within the
code segment. This is not difficult in
assembly language but C never
allocates static/global variables in the
code segment.

None — ASM programs can be freely
copied between calculators.

No — ASM programs are not
full-fledged applications. They can
only be called from TI-BASIC as
subprograms or from the Home
screen author line.

Polled — ASM programs must poll
the keyboard to receive input from the
user. No other applications can run
until the ASM program returns to the
OS. ASM programs do not get any
automatic behavior for special keys
on the keyboard.

TI-89 / TI-92 Plus Developer Guide

Not for Distribution

Beta Version January 26, 2001

24

Chapter 5: Flash Applications vs. ASM Programs

Flash Application

ASM Program

System overrides

Localization

TI-BASIC
extensions

Shared code

Object-oriented
features

Yes — Flash applications can
override many system features.

Yes — Calculator language
localization is provided by Flash
applications.

2 0 — A single Flash application can
provide many TI-BASIC extension
functions and subprograms.

Yes — Flash applications have a
shared-code interface which can be
used as a library for other Flash
applications or ASM programs.

Yes — Each Flash application has an
object frame which exposes its
attributes (data and methods). Object
frames can be arranged into a class
hierarchy for method and attribute
inheritance and class mix-ins.

No — ASM programs may move
during heap garbage collect. Pointers
to overriding system code would
become invalid.

No — The OS only looks at Flash
apps for language localizers.

1 — Each ASM program implements
one TI-BASIC subprogram.

No — ASM programs have no
OS-supported shared-code interface.

No

TI-89 / TI-92 Plus Developer Guide

Not for Distribution

Beta Version January 26, 2001

25

6. Assembly Language Programming Overview

This chapter covers how to use assembly language to write programs for the
TI1-89 / TI-92 Plus calculator. You should already know how to write programs in
assembly language and be familiar with Motorola 68000 architecture. See the
Tl Web site and the TI-89 / TI-92 Plus Guidebook.

6.1. What are ASM Programs?

ASM programs are subroutines written in 68000 assembly language. Because
they appear as data type ASM in the VAR-LINK window, they are called ASM
programs. They can be called from TI-BASIC programs or from the Home screen
author line just like other TI-BASIC subroutines but with the advantage of speed
and direct control of calculator resources that TI-BASIC as an interpreted
language could never attain. ASM programs cannot, however, return function
values on the estack to TI-BASIC.

ASM programs are small (< 8 K for AMS 2.03 and < 24 K for AMS 2.04) and
execute in RAM. They are easy to share with other calculators through the link
port. You should consider developing a Flash application if your assembly
language program is large. Because Flash applications are loaded into and
execute from Flash ROM, they do not take up precious RAM. Additionally, your
Flash applications enjoy a measure of copy protection that ASM programs do not
provide.

6.2. Hardware Stack

The user hardware stack is 15.5 KB in size located from 0x0400 to Ox4BFF in
memory. The stack serves four main purposes: it holds the return address from
subroutine calls, subroutine parameters are passed on the stack, subroutine local
variables are allocated on the stack, and register contents can be temporarily
pushed onto and popped from the stack.

There is special circuitry in the calculator which detects stack overflow. An
attempt to push a value or call a subroutine when the stack pointer is below
0x0400 causes level 7 auto-vector interrupt (address at memory location
0x007C) to occur. The level 7 auto-vector handler throws a protected memory
error. See chapter 10. Error Handling to learn how to catch errors.

6.3. Register Usage

Register A7 is the stack pointer. Do not use A7 for anything else. The stack
contains the return address to the TI-BASIC interpreter when your ASM program
is called.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

26 Chapter 6: Assembly Language Programming Overview

Besides register A7, you can use the remaining registers as needed. But, if you
intend to call OS-resident routines or mix subroutines written in assembly
language and C, you should adhere to the Sierra C™ register usage
conventions.

Registers DO, D1, D2, AO, and Al are scratch registers. You do not need to save
scratch register contents before using them. C uses register A6 as the subroutine
parameter and stack-based variables frame pointer.

Save and restore D3 — D7 and A2 — A6 whenever you use them in subroutines.

The following example saves registers D3 — D5 and A2 — A3.

movem.| d3-d5/a2-a3,-(sp) ;the assembler recognizes SP as
; an alternative to A7

Restore register values before returning from subroutine with:

movem.| (sp)+,d3-d5/a2-a3

For memory and speed efficiency, your subroutines should only save and restore
the registers you use. If you use only scratch registers, then you do not need to
save any registers.

Use the link and unlk instructions with register A6 to access subroutine
parameters and to allocate temporary local variables.

Sierra C expects function values to be returned in registers. Integer values are
returned in DO. Pointer values are returned in AO.

6.4. Calling Flash-ROM-Resident Routines

Memory address 0xC8 contains a pointer to a table of OS routines and data
structures. File tiams.inc contains jump table offsets which let you call OS
routines from assembly language.

For example, to call OS routine kbhit to determine if a key has been pressed on
the keyboard:

.include "tiams.inc"

move.l 0xC8,a2 ;a2 -> jump table

move.| kbhit(a2),a0 ; get address of kbhit routine

jsr (a0) ; call kbhit()

tst.w do ; zero = no keypress, nonzero = key waiting

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 6: Assembly Language Programming Overview

27

Arguments are passed to OS-resident routines on the hardware stack. Use the C
declaration of an OS routine to determine the type and order of arguments
required by the routine. Arguments are pushed onto the hardware stack in
right-to-left order described by the routine’s C prototype declaration.

For example, the program would call memcmp to compare two byte arrays. The

C prototype for memcmp is:

int memcmp(const void *s1, const void *s2, size_t count);

The Assembly language call is:

; if (memcmp(ID, myid, sizeof(myid)) == 0)

move.| #5,-(sp)

pea myid(a6)

pea id(a6)

move.| memcmp(a2),a0
jsr (a0)

add.w #12,sp

tst.w do

bne notTheSame

; push size of myid
; push address of myid
; push address of ID
; get address of memcmp
; call memcmp
; pop arguments from stack
; test result from memcmp
; not equal --->

When you look at OS routine C prototypes, keep in mind the size and range of C
data types. In particular, note that int is two bytes in the AMS.

Type Size (bytes) |Range
char 1 -128 127
unsigned char 1 0 255
short 2 -32768 32767
unsigned short 2 0 65535
int 2 -32768 32767
unsigned int 2 0 65535
long 4 -2147483648 2147483647
unsigned long 4 0 4294967295
pointer 4 0 OXFFFFFFFF
Table 6.1: AMS C Data Types
6.5. Subroutine Linkage

Use link to allocate space from the hardware stack for local variables. Use unlk
to free stack space before returning from the subroutine. Use the movem.|

instruction to save and restore registers.

Example: subroutine linkage for subroutine mySubr with eight bytes of local

variables and two parameters.

TI-89 / TI-92 Plus Developer Guide Not for Distribution

Beta Version January 26, 2001

28

Chapter 6: Assembly Language Programming Overview

Its C prototype is:

short mySubr(short a, short b);

The Assembly language subroutine is:

;subroutine entry
mySubr:

:subroutine exit

link a6,#-8

movem.| d3-d4/a2,-(sp)
move.w 8(a6),d0
move.w do,-8(ab)
move.w -2(a6),d0
movem.| (sp)+,d3-d4/a2
unlk a6

rts

; allocate 8 bytes for local
; variables
; save registers

; get parameter a from caller
; save in local variable storage

; return function result in DO
; restore registers
; free stack space
; return from subroutine

Here is how stack memory looks in the above example after subroutine entry.

i7A7

J/7A6

12 bytes 8 bytes 4 bytes 4 bytes 2 bytes 2 bytes
-20(ab) -8(ab) 0(ab) 4(ab) 8(ab) 10(ab)
saved D3, D4, and A2 local variables saved A6 return a b
address

Figure 6.1: Example of ASM Stack Memory

TI-89 / TI-92 Plus Developer Guide

Not for Distribution

Beta Version January 26, 2001

Chapter 6: Assembly Language Programming Overview 29

6.6. Sample ASM Program

ASM programs do not have to be written in assembly language. Here is a sample
ASM written in C. ASM program waitkey accepts a keypress from the user. It
turns on the PAUSE indicator in the status line and puts the calculator in low
power mode until a key is pressed. The key code for the pressed key is stored in
a variable of the programmer’s choosing.

/* ASM program to wait for a keypress. Go into idle mode until a
key is pressed. */

#include "tiams.h"

[* Entry point must be called main */
void main(void)
{
Access_AMS_Global_Variables;
Event e;
USHORT ch;
EStackindex varname;

varname = top_estack;

[* Argument must be string containing name of a variable */
if (ESTACK(varname) = STR_DATA_TAG)
ER_throw(ER_ARG_MUST_BE_STRING);

[* Get pointer to beginning of variable name */
varname = next_expression_index(varname-1) + 2;

[* Make sure name is legal and not reserved for something else */

if (TokenizeSymName(varname, TSF_PASS_ERRORS) == NULL)
ER_throw(ER_INDIR_STRING_NOT_VARNAME);

varname = top_estack;

[* Get a keypress */
while ((ch = EV_getc(ST_PAUSE, &e)) == 0)

/* Push character number onto estack */
push_ushort_to_integer(ch);

[* Pop character number into variable */
VarStore(varname, STOF_ESI, 0, top_estack);

To get a keypress code into, say, variable k, in your TI-BASIC program call
waitkey(“K”).

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

30 Chapter 6: Assembly Language Programming Overview

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

31

7.

Flash Application Layout

7.1.

7.1.1.

This chapter presents the physical layout of AMS Flash applications on disk and
in calculator memory. It also discusses what needs to be in your source code to
make a Flash app interface with the OS.

File Format

AMS application files are embedded within three layers of headers: the Flash
header used by TI-GRAPH LINK™ software, the certificate header needed for
license tracking, and the application header needed by the AMS OS.

Flash header

Certificate header

Application header

Relocation map

Application code

Initial data table

Signature

Figure 7.1: Flash Application File Format

Flash Header

The Flash header is used by TI-GRAPH LINK software. TI-GRAPH LINK
removes this header when it sends software to a calculator.

The following table describes the fields of the Flash header used by AMS
applications.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

32

Chapter 7: Flash Application Layout

Offset Length

(bytes) (bytes) |Contents

0 8 ETIEL**”

8 2 revision number O

10 1 flags (O = binary data)

11 1 object type (0)

12 1 revision day [

13 1 revision month O

14 2 revision year [

16 1 length of internal application name

17 8 internal application name (zero-padded on the right end if length
< 8 bytes)

25 23 filler (zeros)

48 1 device type (0x98 = TI-89, 0x88 = TI-92 Plus)

49 1 data type (0x24 = application)

50 24 filler (zeros)

74 4 length of data following header O

Table 7.1: Flash Header Format

0 Binary-coded decimal, most significant digit first.
0 Integer, least significant byte first.

7.1.2. Certificate Header

The certificate header is used by the license tracking software in the calculator.
This header is kept with the application when it is downloaded into the calculator
and when it is transmitted from one calculator to another or uploaded to a

computer.

The certificate contains variable-length tagged fields. The application itself is
actually a tagged field of the certificate. Other fields include the application’s
product ID (a number which cross-references the certificate with a license in the
calculator’s unit certificate), revision number, build number, internal name, and
an embedded date certificate (the date the certificate was created).

TI-89 / TI-92 Plus Developer Guide

Not for Distribution Beta Version January 26, 2001

Chapter 7: Flash Application Layout 33

7.1.3. Application Header

The OS keeps track of apps through the application header. The application
header contains information about the application itself. The header contains the
internal name of the application, flags, the length of the application’s data
segment, an offset to the beginning of application code, an offset to the
beginning of initial data, and the length of initial data.

Lengths and offsets are stored most significant byte first — the convention used
in the Motorola 68000 microprocessor.

This header is created by the MKAPPLET uitility.

The following fields may be accessed through the AppHdr structure.

Offset Length

(bytes) | (bytes) |Contents

0 4 magic number (0x167B533D)

4 8 internal application name (padded with trailing zeros to eight
bytes)

12 24 reserved (fill with zeros)

36 2 flags

38 4 length of data segment

42 4 byte offset to code segment

46 4 byte offset to initial data table

50 4 length of initial data table

54 4 length of optional header — additional information can be stored
just after the application header.

58 n optional header — this information is ignored by the OS.

Table 7.2: Application Header Format
7.1.3.1. Magic Number

The magic number marks the beginning of the app header.

7.1.3.2. Internal Application Name

Every application has a unique internal name.

Note: This field must match the internal application name in the Flash header. The internal
application names in the app header and Flash header are case sensitive and must be
identical.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

34

Chapter 7: Flash Application Layout

7.1.3.3.

7.1.3.4.

7.1.3.5.

7.1.3.6.

Even built-in applications have internal names. You can call EV_getAppID with a
built-in app’s internal name to get its application ID. Your app can send
messages to a built-in app (see EV_sendEvent) given its app ID.

Application Name Internal Name
Home TIHOME

Y= Editor TIEQUED
Window Editor TIWINDED
Graph TIGRAPH
Table TITABLED
Data/Matrix Editor TIDMED
Program Editor TIPRGMED
Text Editor TITEXTED
Numeric Solver TIHNSLVR

Table 7.3: Internal Names of Built-in Applications

Flags

0x0001 APPHDR_LOCALIZER Application provides language localization for the AMS
Operating System (OS). The language setting pop-up
menu on page 3 of the calculator's mode window is built

by scanning all the app headers for applications with this
flag set.

The remaining flag bits are reserved and should be zero.

Length of Data Segment

The data segment length is the amount of static RAM to allocate to the
application when it is loaded into the calculator. It consists of the static initialized
(.data) and uninitialized (.bss) RAM sections.

Byte Offset to Code Segment

The byte offset to code is a header-relative pointer to the beginning of the
application code image.

Byte Offset to Initial Data Table

The contents of the application’s initialized RAM (.data section) are initialized by
copying the data from this table.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 7: Flash Application Layout 35

7.1.3.7.

7.1.3.8.

7.1.4.

7.1.5.

7.1.6.

Length of Initial Data Table

Number of bytes in initial data table.

Optional Header

Additional header information may be included after the required header section.
The optional header length specifies how many bytes are in the header
extension.

Relocation Map

The OS uses the relocation map to calculate absolute addresses when the
positions of the code and data segments are finally established. The relocation
map consists of a six-byte entry for each location which needs to be updated.

Offset Length
(bytes) (bytes) [Contents

0 3 hole offset

3 3 base (2 bits) and relative value to place in hole (22 bits)

Table 7.4: Relocation Map Format

The hole offset specifies where in the application code or initial data table an
absolute address needs to be updated.

The value to store in the hole is calculated from the base and relative value. The
base is 00 for code-segment relative and 10 for data-segment relative. Base
values 01 and 11 are reserved for future implementations of AMS.

Application Code

The code segment contains executable application code and constant data.

Initial Data Table

When the OS installs an application, it allocates a data segment in RAM to hold
static and external variables. The initial data table provides their initial values.
Static/external variables which are not explicitly initialized are set to zero.

The application’s data segment is initialized when the application is installed and
reinitialized every time the application is moved in Flash memory because of
garbage collection.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

36 Chapter 7: Flash Application Layout

7.1.7. Signature

The signature protects everything from the beginning of the certificate header to
the end of the application from changes.

7.2. Layout in Memory

The OS creates an Application Control Block (ACB) for each app in the calculator
whether it is one of the built-in apps that come preinstalled from the factory or
installed later as a Flash app.

Routine EV_getAppID returns the ID of an app given its internal name. By
design, the app ID is also the handle to the app’s ACB. Dereference the handle
to get a pointer to the app’s ACB.

ACB * pacbh = (ACB *)HeapDeref(EV_getAppID(name));
ACBs form a linked list in memory. Global OS variable OO_firstACB contains a

handle to the first ACB. Routines OO _NextACB and OO _PrevACB are used to
traverse the list of ACBs.

The Application Control Block contains information about the current state of the
app. Here is a description of the ACB structure.

USHORT flags — Application control flags:
0x0001 — ACB_BUILTIN, the app is a built-in
application.
0x0002 — ACB_INSTALLED, the OS sets this flag

when app installation is complete.

0x0004 — ACB_LOCALIZER,the appisa
language localizer, i. e. its name
appears in the MODE screen as a
language choice.

0x0008 — ACB_LOCK, reserved.

0x0010 — ACB_JT_VERSION, jump table version
mismatch, do not show on the APPS
pop-up menu.

0x0020 — ACB_SELECTED, app is selected in
the VAR-LINK screen.

0x0800 — ACB_COLLAPSE, collapse view of
TI_BASIC extension functions and
commands in the VAR_LINK screen.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 7: Flash Application Layout 37

0x1000 — ACB_BG, app receives background
processing.
0x4000 — ACB_COMPRESS, app is being moved
during Flash memory compression.
0x8000 — ACB_DELETE, app is about to be
deleted.
AppID myID — ID of this app.
AppID nextID — ID of the next app in the linked list.
AppID previD — ID of the previous app in the linked list.
ULONG publicStorage — Temporary storage space for the app.
AppHdr const * appHeader — Pointer to the AppHdr structure. An AppHdr resides
with the app in Flash memory and cannot be changed.
BYTE const * certhdr — Pointer to the certificate header.
pFrame appData — Handle to the app’s object frame. Use OO_Deref to

convert it to a pointer.

The OS allocates memory for applications from two pools. The executable code
and constant resources (.text and .const sections) are stored in Flash ROM.
Static variables (.data and .bss sections) are stored in RAM.

Applications are stored in Flash memory beginning at the first sector boundary
after OS code. The OS reapportions archive memory to application memory as
needed to make room for additional Flash applications. When an application is
deleted, applications after it in memory are moved up to fill the void. Flash
sectors vacated during this process are returned to archive memory.

One pad byte of OxFF is added between apps if needed to make sure each app
begins on an even address boundary.

The OS allocates the application’s static data in high RAM. The handle to this
chunk of memory is locked to assure that it does not move during heap
compaction. The data segment contains the app’s Application Control Block,
initialized data (.data), and uninitialized data (.bss). The OS frees the data
segment when the application is deleted.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

38 Chapter 7: Flash Application Layout

4 ACB)
text
data T——— I FRAVE
RAM < > Flash ROM
.bss
_ .const Y,

Figure 7.2: Application RAM and Flash Usage

The OS expects the first variable in the application’s initialized data (.data
section) to be a pointer to the app frame. The OS must be able to find the app
frame in order to get the app’s event processor entry point. To make this happen,
you must declare a variable of type pFrame in your C source and initialize it with
the address of your application’s frame. Furthermore, you need to make sure it is
the first initialized variable in your application.

7.3. Source Layout

An AMS application can serve several purposes. It can have an interactive user
interface through windows and the keyboard — the most common usage. It can
extend TI-BASIC with a library of functions and programs. It can implement a
shared-code library — routines which can be called from other applications. And,
it can override tables in the OS or another application to provide local language
customization. An app can provide a mix of any of these features.

This section looks at the source requirements your application needs to
implement each of these features.

7.3.1. Interactive Applications

Interactive applications need an object frame and an event handler. The object
frame provides a directory of attributes and methods in the application and
serves as an interface to the OS. It is in the object frame that the OS finds the
address of the app’s event handler.

This section covers the layout of the object frame with the help of FRAMEATTR
and ENDFRAMENacros, how the OS finds the app’s frame, and details of
predefined frame attributes and methods. Finally, a simple example pulls the
pieces together into a complete application.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 7: Flash Application Layout 39

7.3.1.1.

FRAME

Here is how a typical frame looks.

#define STRING1 (OO_FIRST_APP_STRING+0)
#define STRING2 (OO_FIRST_APP_STRING+1)

FRAME(frameName, parent , prototype , firstAttr , count)
ATTR(attrSelector , Vvalue)

ATTR(...)

ATTR(OO_FIRST_STRING+STRING1, "a string")
ATTR(OO_FIRST_STRING+STRINGZ2, "another string")

ENDFRAME
The FRAMEMacro defines the header of an object frame, an 00_Hdr structure.

» frameName — name of the object frame. This becomes the name of the
OO_Hdr structure.

e parent— pointer to another frame higher in the object hierarchy. This field
should contain 00_SYSTEM_FRANMRB pointer to the root of the object hierarchy
in the OS.

e prototype — pointer to another frame on the same level of the object
hierarchy, often another frame within the application. This value can be zero
(0) if the application has only one object frame. At any rate, this value must
be zero in the last prototype frame of a linked list.

* firstAttr — number of the first attribute or method selector in the frame. This
must be the same value as the attrSelector of the first ATTRmacro in the
frame.

e count— count of attributes and method selectors in the frame.

The FrRAMEheader is followed by ATTRmacros which define frame attributes
(OO_Attr structures).

» attrSelector — the selector number of the attribute. Every selector within a
frame must be unique and sorted into increasing order. The object frame
accessor functions (00_Getattr and 00_SetAttr) look up frame attributes by
their selector number.

Note: The OS does not check that attribute selectors are in increasing order. You must
make sure the attributes are in order when you create the frame. Attribute look-up
will fail if they are not.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

40

Chapter 7: Flash Application Layout

7.3.1.2.

7.3.1.3.

7.3.1.3.1.

* value — the value of a frame attribute. This can be a number, a pointer to a
string, a method entry point, or pointer to an application-defined structure —
anything which can fit in 32 bits.

The frame ends with an ENDFRAMENAacro.

The FRAMEand ATTRmacros create const data structures which reside in Flash
memory in the .text section of the application. For this reason, the FRAMBmMacro
also sets the read-only flag in the object frame header.

Pointer to FRAME

The OS must be able to find the object frame in the application. The OS expects
the first initialized variable in an application to be a pointer to the application’s
object frame.

For example, say an application has an object frame named myAppFrame. Declare
an initialized frame pointer:

pFrame pAppFrame = (pFrame)&myAppFrame;

By declaring pAppFrame before any other initialized static variables, the first
variable in the .data section will be a pointer to the app frame — just where the
OS expects to find it.

Object Frame Attributes

Application object frames can contain many attributes and method entry points.
This section discusses the attributes and methods reserved by the OS.

Each attribute and method name is a C macro which defines a numeric selector
number. In addition, there are macros in tiams.h which fetch and set application
attributes and call application methods. The following slot descriptions state the
attribute or method name (slot number) and accessor prototypes.

Many application attributes are hard-coded in the source and are not meant to be
changed at run-time. The description of read-only attributes shows only the
macros to fetch their values.

Attribute OO_APP_FLAGS (0x1)
APP_Flags GetAppFlags(AppID)

0x0001 APP_INTERACTIVE Application has an interactive interface. Its name
appears on the app’s menu. This flag is zero for
libraries and language localization apps.

0x0002 APP_CON Attach Current/Open/New submenu to application
name on the app’s pop-up menu. This flag is ignored if
the app’s APP_INTERACTIVE flag is off.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 7: Flash Application Layout 41

0x0004 APP_ACCESS_SYSVARS Application can store to column variables of the data
matrix editor without causing a protected variable error
message.

0x0008 APP_BACKGROUND Application wants CM_BACKGROUND events. This
allows applications, including noninteractive
applications, to get execution time even when the
application is not active.

The remaining flags are reserved and should be zero.

7.3.1.3.2. Attribute OO_APP_NAME (0x2)
UCHAR * GetAppName(AppID)

Pointer to the application’s name. This hame is displayed in the app’s pop-up
menu if the application has an interactive interface. The length of the name
should be no more than 20 characters on the TI-89 and no more than 32
characters on the TI-92 Plus.

7.3.1.3.3. Attribute OO_APP_TOK_NAME (0x3)
UCHAR * GetAppTokName(AppID)

Pointer to application token name (< 8 characters). This is the name TI-BASIC
programs use to refer to functions and programs exported from the application.
For example, if application “Linear Algebra” has a token name of linalg and
exports its own implementation of the sin function, TI-BASIC programs can call
linalg.sin(. . .) which will not be confused with the built-in sin function.

This attribute is optional. If your application defines no TI-BASIC extension
functions or programs, this attribute is unnecessary.

7.3.1.3.4. Method OO_APP_PROCESS_EVENT (0x4)

void AppProcessEvent(pFrame self, Event * event)

Pointer to the application’s event handler routine. The OS sends event messages
to the application by calling its event handler.

This method is optional. If the application is a library with no user interface, then
it can ignore event messages.

If the application needs to respond to any events, then this method must be
implemented. A library application may need to know, for example, when it is
being installed (CM_INSTALL), moved (CM_PACK/CM_UNPACK), or deleted
(CM_UNINSTALL).

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

42

Chapter 7: Flash Application Layout

7.3.1.3.5.

7.3.1.3.6.

7.3.1.3.7.

7.3.1.3.8.

7.3.1.3.9.

Attribute OO_APP_DEFAULT_MENU (0x5)

MENU * GetAppDefaultMenu(AppID)
void SetAppDefaultMenu(AppID, MENU *)

Pointer to the application’s menu resource.

Attribute OO_APP_DEFAULT_MENU_HANDLE (0x6)

HANDLE GetAppDefaultMenuHandle(AppID)
void SetAppDefaultMenuHandle(AppID, HANDLE)

This attribute is managed automatically by the OS when your application uses a
single static menu. See section 9.6. Menu Processing on when and how to set
this attribute.

Attribute OO_APP_EXT_COUNT (0x7)
long GetAppExtCount(ApplID)

The number of TI-BASIC extension functions and commands exported by this
application.

This attribute is optional. This attribute should be defined only if the application
exports TI-BASIC extensions.

Attribute OO_APP_EXTENSIONS (0x8)
APP_EXTENSION const * GetAppExtensions(AppID)

Pointer to an array of APP_EXTENSIONstructures. There is one entry in the table for
each exported TI-BASIC function or program. An entry contains the name string
number, catalog help string number, and index of the function or program.
Names in the APP_EXTENSION table must be sorted in ASCII order.

This attribute is optional. This attribute should be defined only if the application
exports TI-BASIC extensions.

Attribute OO_APP_EXT_ENTRIES (0x9)
APP_EXT_ENTRY const * GetAppExtEntries(AppID)

Pointer to an array of APP_EXT_ENTRYstructures. There is one entry in the table for
each exported TI-BASIC function or program. An entry contains a pointer to the
C routine which implements the extension, and a flag word which indicates
whether the extension is a function or program.

This attribute is optional. This attribute should be defined only if the application
exports TI-BASIC extensions.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 7: Flash Application Layout 43

7.3.1.3.10.

7.3.1.3.11.

7.3.1.3.12.

7.3.1.3.13.

Method OO_APP_LOCALIZE (0xA)
BOOL AppLocalize(AppID self, UCHAR const * language)

Pointer to the application’s language localization routine. The OS calls this
method in each application when the user chooses a new language in the mode
window. This method returns TRUE if it switched the app to the given language.

How to localize an application for another language is covered in detail in section
7.3.4. Language Localization

This method is optional.

Method OO_APP_UNLOCALIZE (0xB)
void AppUnlocalize(AppID self)

Pointer to the application’s routine to remove language localization.

This method is optional but should be implemented if the above
OO_APP_LOCALIZE method is implemented.

Method OO_APP_CAN_DELETE (0xC)
BOOL AppCanDelete(AppID self)

Before the OS deletes an application, it calls this method to ask the application if
it can be deleted. This method returns TRUE if the application can be deleted.

This method is optional. Implement it only if you have special requirements for
when your app can be deleted.

Method OO_APP_CAN_MOVE (0xD)
BOOL AppCanMove(AppID self)
The application returns TRUE if it can be relocated to another address in Flash

memory. The OS uses this method to query applications while it is preparing to
garbage collect Flash memory.

This method is optional. Implement it only if you have special requirements for
when your app can be moved.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

44

Chapter 7: Flash Application Layout

7.3.1.3.14.

7.3.1.3.15.

7.3.1.3.16.

7.3.1.3.17.

7.3.1.3.18.

Method OO_APP_VIEWER (0xE)
BOOL AppViewer(AppID self ,BYTE* vartype , WINDOW *, HSYM symbol)

The [F6: Contents] menu command of the VAR-LINK window calls this method of
each application in turn until one of them returns TRUE. If an application knows
how to display variables of type vartype, it displays the contents of variable
symbol in the given window and returns TRUE.

This method is optional. Applications which implement new data types may use
this method to display a variable it understands in the VAR-LINK contents
window. If no application returns TRUE, then the variable’s contents are not
displayed.

Attribute OO_APP_ICON (OxF)
BITMAP * GetApplcon(AppID)

A pointer to a BITMAP which represents the application’s icon.

This attribute is optional.

Method OO_APP_EXT_HELP (0x10)
void AppExtHelp(AppID self, USHORT strnum)

The catalog screen calls this method when the users presses [F1: Help] for a
function or command extension implemented by the application.

This method is optional. It should only be implemented if the application exports
TI-BASIC extensions. The system implementation of this method displays the
extension’s help string if this method is not implemented.

Method OO _APP_NOTICE_INSTALL (0x11)
void AppNoticelnstall(AppID self, ACB const *)

The OS calls this method in every application when a new application is installed.
The app is passed a pointer to the new application’'s ACB.

This method is optional.

Method OO_APP_ABOUT (0x12)
char const * AppAbout(AppID self)
The VAR-LINK screen calls this method when a user presses [F6: Contents] for a

Flash application. The application returns a pointer to a string containing version
and copyright information.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 7: Flash Application Layout 45

7.3.1.3.19.

7.3.1.4.

This method is optional. The system implementation of this method displays the
application’s internal name, revision number, and date when its certificate was
signed.

Attribute OO_APPSTRING (0x1000 and up)

char const *

Applications store pointers to their strings beginning with selector number 0x1000
defined by macro 00_APPSTRINGThe menu system and language localizers
expect application string numbers to be defined in the range 0x1000 — Ox17FF.

Example

C source file pipes.c:

#include "tiams.h"
#include "pipesr.h" a
#include "pipes.h”

[* Prototypes of functions in this source file */
void main(pFrame, PEvent);

static short sabs(short);

static short random(short, short);

FRAME(pipesFrame, OO_SYSTEM_FRAME, 0, OO_APP_FLAGS, 6)
ATTR(OO_APP_FLAGS, APP_INTERACTIVE) /* This is an interactive app */
ATTR(OO_APP_NAME, "Pipes") /* Name in [APPS] menu */
ATTR(OO_APP_PROCESS_EVENT, &main) /* Address of event handler */
ATTR(OO_APP_DEFAULT_MENU, &pipesMenu) /* Menu defined in pipesr.r */
[* Strings used in menu */

ATTR(OO_FIRST_STRING+P_Tools, "Tools") a
ATTR(OO_FIRST_STRING+P_Clear, "Clear")
ENDFRAME

pFrame PipesFrame = (pFrame)&pipesFrame;/* Pointer to object frame */

#define BOX_DIMENSION (15)
#define MAX_BOX (25)

WINDOW w;
SCR_COORDS width, height;
WIN_RECT box;

/* Event handler - the OS calls this routine when an event has occurred
*/
void main(pFrame self, PEvent event)
{
static short deltaX = 1, deltaY = 1;
static short boxcount = -1;

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

46 Chapter 7: Flash Application Layout

switch (event->command)
{
case CM_START:
WinOpen(&w, event->info.startInfo.startRect, WF_DUP_SCR);
DrawWinBorder(&w, &w.Window);
WinClr(&w);

width = w.Client.xy.x1 - w.Client.xy.x0;
height = w.Client.xy.y1 - w.Client.xy.y0;

/* Pick initial box location */

if (box.x0 == 0 && box.y0 == 0)

{
box.x0 = random(1, width - BOX_DIMENSION - 1);
box.x1 = box.x0 + BOX_DIMENSION;
box.y0 = random(1, height - BOX_DIMENSION - 1);
box.y1 = box.y0 + BOX_DIMENSION;

}

break;

[* User pressed [F1][1:Clear] */
case CM_CLEAR_ALL:
WinClr(&w);
break;

case CM_QUIT:
WinClose(&w);
break;

[* Draw pipes when system is not busy with anything else */
case CM_NULL:
if (boxcount <= 0)
{
/I Choose new direction
deltaX = random(2, 4);
if (random(0,99) < 50)
deltaX = -deltaX;

deltaY = random(2, 4);
if (random(0,99) < 50)
deltaY = -deltaY;

boxcount = MAX_BOX;
}

if (box.x0 < 0)
deltaX = sabs(deltaX);

if (box.x1 > width)
deltaX = -sabs(deltaXx);

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 7: Flash Application Layout 47

if (box.y0 < 0)
deltaY = sabs(deltaY);
if (box.y1 > height)
deltaY = -sabs(deltaY);

WinFill(&w, &box, A_REVERSE);
WinRect(&w, &box, A_NORMAL);

box.x0 += deltaX;
box.x1 += deltaX;
box.y0 += deltaY;
box.yl += deltaY;

boxcount -=1;
break;

case CM_ACTIVATE:
DrawWinBorder(&w, &w.Window);
EV_defaultHandler(event);

break;

case CM_WPAINT:

WinBackupToScr(&w);
break;
default:
EV_defaultHandler(event);
break;
}
}
static short sabs(short n)
{
returnn<0?-n:n;
}

static short random(short low, short high)

{

short range;
static long seed = 29;

if (seed == 0)
seed = 1;

seed *= 16807;

if (seed < 0)
seed = -seed;

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

48

Chapter 7: Flash Application Layout

7.3.2.

range = high - low + 1;

return low + seed % range;

}

C header file pipes.h:
#ifndef _PIPES_H
#define _PIPES_H

#define P_Tools OO_FIRST_APP_STRING 0
#define P_Clear OO_FIRST_APP_STRING+1

#endif

Resource file pipesr.r:

#include "tiams.h"
#include "pipes.h”

TOOLBOX pipesMenu, RC_NO_IDS, 0, 160 {
P_Tools { 0
P_Clear, CM_CLEAR_ALL

}
}

Pipesr.h is generated by the resource compiler.

The numbering of menu commands and application strings needs some explanation. The
menu system requires all string numbers that it references to be in the range 0x000 — OXFFF.
However, system string attributes begin at 0x800 and application string attributes begin at
0x1000. Consequently, when an app menu refers to string number 0x801, it fetches app
attribute 0x1001. The example code shows how to use macros OO_FIRST_APP_STRINGn
the header file and OO_FIRST_STRINGIn the object frame to define menu string numbers
and their corresponding text in the app frame.

TI-BASIC Extensions

Applications can extend TI-BASIC with functions and programs written in C or
assembly language. The TI-BASIC interpreter interfaces with apps through the
OO_APP_EXT_COUNDO_APP_EXTENSIONSand OO_APP_EXT_ENTRIESttributes.

This example illustrates a simple application which implements a couple of
TI-BASIC extensions. The app has no user interface, hence, no event handler
entry point.

#include "tiams.h"

[* String numbers */

#define H_folders 0
#define H_vars 1
#define H_HELP 100

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 7: Flash Application Layout 49

void folders(void);
void vars(void);

APP_EXTENSION const extensions[] = O

{
/* function name #, help string #, function index */
{OO_APPSTRING+H_folders, OO_APPSTRING+H_HELP+H_folders, H_folders},
{OO_APPSTRING+H_vars, OO_APPSTRING+H_HELP+H_vars, H_vars }

3

APP_EXT_ENTRY const extEntries[] =

{

{folders, APP_EXT_FUNCTION}, 0
{vars, APP_EXT_FUNCTION}

I3

FRAME(memutilFrame, OO_SYSTEM_FRAME, 0, O0_APP_FLAGS, 10)
ATTR(OO_APP_FLAGS, APP_NONE)
ATTR(OO_APP_NAME, "Memory Utilities")
ATTR(OO_APP_TOK_NAME, "memutil") O
ATTR(OO_APP_EXT_COUNT, 2) [* export two extension functions */
ATTR(OO_APP_EXTENSIONS, extensions) /* address of extensions table */
ATTR(OO_APP_EXT_ENTRIES, extEntries) /* address of ext entries table
*
ATTR(OO_APPSTRING+H_folders, "folders")
ATTR(OO_APPSTRING+H_vars, ‘"vars")
ATTR(OO_APPSTRING+H_HELP+H_folders, "LIST OF FOLDERS")
ATTR(OO_APPSTRING+H_HELP+H_vars, "LIST OF VARIABLES IN FOLDER")
ENDFRAME

pFrame MemutilFrame = (pFrame)&memutilFrame; a

void folders(void)
/* Return a list of folders on the estack */

{
SYM_ENTRY *pSym;
static BYTE const HomeFolder[] = {0, 127, 0};

push_quantum (END_TAG);

pSym = SymFindFirst(&HomeFolder[2], FO_NONE);
while (pSym != NULL)

push_zstr((char *)pSym->Name);
pSym = SymFindNext();
}

push_quantum (LIST_TAG);
}

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

50 Chapter 7: Flash Application Layout

void vars(void)
/* Return on the estack a list of variables in current or given folder */
{

Access_AMS_Global Variables; 0

BYTE folder[SYM_LEN+1];

BYTE tfolder[MAX_SYM_LEN];

BYTE *fname;

SYM_ENTRY *pSym;

EStackindex e = top_estack; a

/* Get folder name */
if (ESTACK(e) == END_TAG)

/* Use current folder */

FolderGetCur(folder);

fname = StrToTokN(folder, tfolder);
}
else
{

if ESTACK(e) = STR_DATA_TAG)
ER_throw(ER_DOMAIN);
fname = e-1;

}

push_quantum (END_TAG);
pSym = SymFindFirst(fname, FO_NONE);
while (pSym != NULL)

push_zstr((char *)pSym->Name);
pSym = SymFindNext();
}

push_quantum (LIST_TAG);
}

[1 The extensions table has an entry for each extension function or program. The first field of
each entry is the string number of the name of the function. The second field is the string
number of the function’s help message. The third entry is an index into the following
extEntries table. The entries in this table must be alphabetized by the function name.

[0 Each entry in the extEntries table cross-references a function number from the
extensions table with the function’s actual address. The C name of a function need not be
the same as its TI-BASIC name — a language localizer may, in fact, override the exported
name. The second field of each entry specifies whether the extension is a function
(APP_EXT_FUNCTION) which returns a value on the estack, or a program
(APP_EXT_PROGRAM) which does not return a value.

0 The OO_APP_TOK_NANMHtribute specifies the short name of the application to use when
referencing its extension functions. In this example, TI-BASIC programs can call

memutil.folders() and memutil.vars().

[0 The first initialized variable in your application must be a pointer to the app frame. Even
though extensions and extEntries appear to be allocated before MemutilFrame , they
are declared const and are not allocated with variables in the .data section. You cannot see it,
but memutilFrame is also declared const by the FRAMEmacro.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 7: Flash Application Layout 51

[0 The Access_AMS_Global_Variables macro is required in every subroutine which needs
to fetch or change AMS global variables. top_estack is a global variable in the computer
algebra system.

7.3.3. Shared-Code Library

An application can make a library of its data structures and functions available as
attribute slots in its object frame. The app library interface should use attribute
slots 0x10000 (OO_FIRST_APP_ATTR) and up. Attribute slots 0x0000 — OXFFFF
are reserved for the OS.

7.3.3.1. Creating the Library Interface

Say, for example, your library implements the following functions and data
structures:

int fileTableCount;

FILE fileTable[FILE_TABLE_SIZE];

int fileOpen(AppID self, char const *filename);

int fileRead(AppID self, int handle, char *buff, int size);

int fileWrite(AppID self, int handle, char const *buff, int size);
void fileClose(AppID self, int handle);

Note: The first parameter of each exported function must be an AppID variable even though it
will always be the ID of your library.

You can use Frame Description Language, FDL, to define an interface to these
data and functions.

fileio.fdl . . .

appvar 0x10000 PlayerFileTableCount: int *;

appvar PlayerFileTable: FILE *;

appfunc PlayerFileOpen(ApplID, char const *): int;
appfunc PlayerFileRead(AppID, int, char *, int): int;
appfunc PlayerFileWrite(ApplID, int, char const *, int): int;
appfunc PlayerFileClose(ApplID, int): void;

Some things to note in the above example:

» The first variable, PlayerFileTableCount, is numbered 0x10000, the first
attribute number available for applications. Subsequent attribute numbers are
automatically incremented unless a new value is supplied.

e The variable type or function result is placed after the colon (:) much in the
style of Pascal.

* Function parameters list only the order and type of arguments. Do not include
parameter names.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

52 Chapter 7: Flash Application Layout

Run the FDL compiler to produce a header file suitable for defining your API call
macros and attribute names.

C>FDL fileio.fdl

Resulting header file fileio.h includes among other things:

/* Frame slot number assignments */

#define OO_PLAYER_FILE_TABLE_COUNT (65536) [
#define OO_PLAYER_FILE_TABLE (65537)

#define OO_PLAYER_FILE_OPEN (65538)

#define OO_PLAYER_FILE_READ (65539)

#define OO_PLAYER_FILE_WRITE (65540)

#define OO_PLAYER_FILE_CLOSE (65541)

[* Accessor/mutator macros */
GetPlayerFileTableCount(appid) 0
SetPlayerFileTableCount(appid, int)
GetPlayerFileTable(appid)
SetPlayerFileTable(appid, FILE *)

/* Function call macros */
PlayerFileOpen(appid, name) 0
PlayerFileRead(appid, handle, buff, size)
PlayerFileWrite(appid, handle, buff, size)
PlayerFileClose(appid, handle)

[0 FDL creates names for attribute slots by converting your variable and method names to upper
case and adding “O0_" prefix.

FDL creates a Set/Get pair of macros for each variable.

These macros hide the details of method dispatch and better demonstrate in your source your
intent to call a library function.

Include fileio.h in your app source so you can use the frame slot assignment
macros in your ATTR declarations.

FRAME(playerObj, 00_SYSTEM_FRAME, 0, 00_APP_FLAGS, .. .)
ATTR(OO_APP_FLAGS, ...

ATTR(OO_PLAYER_FILE_TABLE_COUNT, &fileTableCount)
ATTR(OO_PLAYER_FILE_TABLE, fileTable)
ATTR(OO_PLAYER_FILE_OPEN, fileOpen)
ATTR(OO_PLAYER_FILE_READ, fileRead)
ATTR(OO_PLAYER_FILE_WRITE, fileWrite)
ATTR(OO_PLAYER_FILE_CLOSE, fileClose)

ENDFRAME

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 7: Flash Application Layout 53

7.3.3.2.

7.3.3.3.

Accessing a Library

HANDLE EV_getAppID(UCHAR const * appname)

Get the ID of an application/shared-code library. appname is the app’s internal
name.

Once you have obtained the ID of an application, you can use the function call
macros created by the FDL compiler to call routines in the app’s library.

#include "tiams.h"
#include "fileio.h"
HANDLE libid;

libid = EV_getAppID((UCHAR *)'TIPLAYER"); 0
if (libid == H_NULL) 0

{
[* Could not find library */

}
n = *GetPlayerFileTableCount(libid); 0

fd = PlayerFileOpen(libid, "script");

Get a handle to the shared-code library.

EV_getAppID returns H_NULL if the requested library cannot be found, i.e., is not installed in
the calculator.

[0 Macros defined in fileio.h can be used to access variables and call functions in the library.

Frame Description Language

Frame Description Language is provided as a tool to simplify the process of
creating an interface to object frame variables and methods. FDL accepts an
input file of statements in the following forms:

O var [
Eappvarg[slot-number] var-name : type
func [slot-number] func-name(pFrame [, type .. .]) : type;

appfunc [slot-number] func-name(AppID [, type . . .]) : type;

Comments begin with the pound sign (#) and extend to end of line.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

54

Chapter 7: Flash Application Layout

The var and func keywords describe object frame variables and functions. FDL
creates macros which let you retrieve and change the values of attribute slots
and call functions in method slots. These created macros require the pointer to
an object frame as their first parameter.

Every application has an object frame interface to the OS. The app’s object
frame also serves as a shared-code library interface. As a convenience, so you
do not have to find the address of the app’s object frame, the keywords appvar
and appfunc create macros which access an app’s object frame attributes given
its app ID.

Note: The first parameter of a func declaration must be type pFrame, the first parameter of an
appfunc declaration must be type ApplID.

The slot-number is an optional decimal (0 — 4294967295) or hexadecimal
(Ox0 — OXFFFFFFFF) number which identifies the slot which the variable or
method occupies. Subsequent slot-numbers are automatically incremented
unless a new value is supplied.

Since attribute slots are 32-bit values, types should declare values which fit in
32-bits, integers and pointers.

Note: Functions which return nothing may declare a return type of void.

The FDL compiler accepts one command line parameter, the name of the file to
compile. It outputs a file of the same name with a .h extension. The output file
contains C macros for accessing object frame attributes and calling frame
methods. The resulting header file is suitable to include in your C source file.

Here is the actual header output file after running the FDL compiler on fileio.fdl in
section 7.3.3.1. Creating the Library Interface

/* FILE: fileio.h
CREATED: 2000.04.13 09:10
INPUT: fileio.fdl
GENERATOR: Frame Description Language compiler, version 2.000
*

[* int * PlayerFileTableCount */
#define OO_PLAYER_FILE_TABLE_COUNT (65536) [
#define GetPlayerFileTableCount(obj) \ 0
(int *)O0_GetAppAttr(obj,65536)
#define SetPlayerFileTableCount(obj,value) \ 0
OO_SetAppAttr(obj,65536,(void *)value)

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 7: Flash Application Layout 55

/* FILE * PlayerFileTable */
#define OO_PLAYER_FILE_TABLE (65537)
#define GetPlayerFileTable(obj) \
(FILE *)OO_GetAppAittr(obj,65537)
#define SetPlayerFileTable(obj,value) \
OO_SetAppAttr(obj,65537,(void *)value)

[* int PlayerFileOpen(AppID, char const *) */
#define OO_PLAYER_FILE_OPEN (65538)
#define PlayerFileOpen(obj,a) \ 0
((int (* const)(AppID, char const *))OO_GetAppAttr(obj,65538))(obj,a)

/* int PlayerFileRead(AppID, int, char *, int) */
#define OO_PLAYER_FILE_READ (65539)
#define PlayerFileRead(obj,a,b,c) \

((int (* const)(AppID, int, char *,
int))OO_GetAppAttr(obj,65539))(obj,a,b,c)

/* int PlayerFileWrite(AppID, int, char const *, int) */
#define OO_PLAYER_FILE_WRITE (65540)
#define PlayerFileWrite(obj,a,b,c) \
((int (* const)(AppID, int, char const *,
int))O0_GetAppAttr(obj,65540))(obj,a,b,c)

/* void PlayerFileClose(ApplID, int) */
#define OO_PLAYER_FILE_CLOSE (65541)
#define PlayerFileClose(obj,a) \
((void (* const)(AppID, int))OO_GetAppAttr(obj,65541))(obj,a)

[0 A symbolic name is created for each frame slot number. The name consists of “OO_" prefixed
to the name of each variable or function converted to upper case letters and underscores.

[0 AGet...macrois created for each variable attribute. It is used to get the value of an object
attribute. It expands into a call to OO_GetAppAttr with the slot number of the attribute to
retrieve. Note the return value is cast to the type of the variable.

[0 A Set...macrois created for each variable attribute. It is used to change the value of an
object attribute. It expands into a call to OO_SetAppAttr .

[0 A method call macro is created for each function attribute. It expands into a call to
OO_GetAppAttr to get the address of the routine to execute. The routine is called indirectly
with the arguments specified in the parameter list of the macro. All the arguments and the
routine return type are cast to the types in the original function definition so the C compiler will
correctly type-check arguments and function return value. Imagine trying to create that macro
manually!

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

56

Chapter 7: Flash Application Layout

7.3.4.

7.3.4.1.

Language Localization

Menu titles and item names, dialog text, help strings, error messages, TI-BASIC
extension names, the name of the application as it appears on the app’s pop-up
menu, any string which appears in the app’s object frame, can be overridden with
a localizer app to add language customization. By placing all strings in the frame
and using XR_stringPtr to cross-reference string numbers to string pointers, the
job of localizing an app for a different language becomes much easier.

An application is typically localized by installing a small companion app which
contains translations of all the app’s strings for one or more languages. When the
user chooses a different language on the MODE screen, all apps are notified of
the new language. Each localizer app which contains a matching language,
responds by overriding its target app’s strings.

Localizer Template

The following sample application is a template localizer app. It can be used to
customize a target app for a different language. There are places in the template
to supply the language, internal name, app’s menu nhame of the target
application, and the translated strings.

Strings in the localizer app override strings with the same attribute number in the
target app’s object frame. Therefore, it is important that translated strings in the
localizer use the same string numbers as the target app. A mismatch between
the localizer string numbers and the target string numbers will lead to confusing
menus and messages in the target when localization is applied.

[* Sample application localizer */

#include "tiams.h"

kel x
Set MyLang to the name of the language which this localizer implements.

Fkkkkkkkkkkkkkkkkkkkkkkkhikrkkkkkhhrkkhkkrkkkk * * * * n/

char const MyLang[] = "Fran" RF_C_CEDILLA "ais";

/‘ * * * * * * * *

Set TargetApp to the internal name of the app which this localizer
will hook into. This is the same name described in section
7.1.3.2. Internal Application Name.

B s s e s e e e e S s xx/

unsigned char const TargetApp[] = "DEMOAPP";

/
Set APPSname to the name Target app should have on the [APPS] menu key.

char const APPSname[] = "Application de D" RF_E_ACUTE "monstration”;

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 7: Flash Application Layout 57

/
Set MY_APP_NAME to the name this localizer app should have in the
VAR-LINK [F7:APPS] screen.

* * * * * /

#define MY_APP_NAME “French Demo Localizer”

void main(pFrame self, PEvent e);

void observer(pFrame self, PEvent e);
BOOL localize(pFrame, char *lang);
void unlocalize(pFrame);

void noticelnstall(pFrame, ACB const *);
BOOL candelete(pFrame self);

static
FRAME(LocalizerFrame, OO_SYSTEM_FRAME, 0, OO_APP_FLAGS, 7)

[* This app does not appear on the [APPS] menu */
ATTR(OO_APP_FLAGS, APP_NONE)
ATTR(OO_APP_NAME, MY_APP_NAME)

[* It needs to respond to some events */
ATTR(OO_APP_PROCESS_EVENT, &main)

[* Export methods used in localization */

ATTR(OO_APP_LOCALIZE, &localize)

ATTR(OO_APP_UNLOCALIZE, &unlocalize)

ATTR(OO_APP_CAN_DELETE, &candelete)

ATTR(OO_APP_NOTICE_INSTALL, ¬icelnstall)
ENDFRAME

pFrame appframe = (pFrame)&LocalizerFrame;

/* This little FRAME is hooked ahead of the Target app's frame. It
accomplishes a couple of things:
1) It renames the Target app on the [APPS] menu, and
2) It redirects its event handler to this app so we can observe its
pack/unpack and uninstall messages. All events are forwarded to
their rightful owner.
*/
static
FRAME(TargetAppFrame, OO_SYSTEM_FRAME, NULL, OO_APP_NAME, 2)

[* Override the Target app's name in the [APPS] menu */
ATTR(OO_APP_NAME, APPSname)

[* Redirect Target app's events to me */
ATTR(OO_APP_PROCESS_EVENT, &observer)
ENDFRAME

/* Place the translated strings here. Keep the following OO_Hdr structure
and target strings array together. The OO_Hdr structure is an object
frame header for the following array of string attributes.

*/

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

58 Chapter 7: Flash Application Layout

static const OO_Hdr TargetStrings =
{
OO _SYSTEM_FRAME,
(pFrame)&TargetAppFrame,
00_RO | OO_SEQ,
OO_FIRST_STRING + OO_FIRST_APP_STRING,

174 /I < number of strings
3
static char * const targetstrings[] =
{
"first string", // <-------m-m-m—-- local translation of strings
"second string",
[* etc. */
b

/* Keep track of when this localizer is hooked into the Target app */
pFrame hook = 0;

[FxFRRKF I I T I KKK KIS T Ik kK Fddkkkkkdkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

This app's event handler needs to unhook itself from the target app
when it is deleted or moved. It can reconnect to the Target app when
it has been reinstalled or has completed its move.

k|
void main(pFrame self, PEvent e)
{
switch (e->command)
{
case CM_UNINSTALL:
case CM_PACK:
unlocalize(self);
break;

case CM_INSTALL:
case CM_UNPACK:
localize(self, XR_stringPtr(XR_NativeLanguage));
break;
}
}

J** * * * * * * * * * *

This routine observes all events sent to Target app. It localizes the
Target after the app UNPACKs and unlocalizes the Target just before it
PACKSs or UNINSTALLSs.

I * * * * * 7(/

void observer(pFrame self, PEvent e)

{
Access_AMS_Global_Variables;

pFrame super = OO_SuperFrame;

switch (e->command)

{

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 7: Flash Application Layout 59

case CM_UNPACK:
[* Pass the event on to the Target app before applying
the localizer hook. */
AppProcessEvent(super, e);
localize(self, XR_stringPtr(XR_NativeLanguage));
break;

case CM_UNINSTALL:
case CM_PACK:
/* Unhook the localizer before passing the event on to the
Target app */
unlocalize(self);

default:
[* Forward all events to their rightful owner */
AppProcessEvent(super, e);
}
}

/**

If requested language matches the language we know, hook over
Target app.

Fxkkkkkkkkck |
BOOL localize(pFrame self, char *requestedLang)

{
if (hook == 0 && strcmp(requestedLang, MyLang) == 0)
return OO_InstallAppHookByName(TargetApp, (pFrame)&TargetStrings, &hook);

return FALSE;
}

[FxFIRR KIS T I KKK KIS T Ik kK F kT kkkkkdkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Unhook from Target app if we have anything to unhook.

void unlocalize(pFrame self)
{
if (hook)
{
0OO_UninstallAppHookByName(TargetApp, hook);
hook = 0;
}
}

[FFFRRKF I ST T Ik KK g KTk kK gk dkkkkkkkkkkkk * * * * * *

We have just been notified that a new app was installed. Is it our
Target application? If so, apply our localization to it.
**/
void noticelnstall(pFrame self, ACB const *pachb)
{
if (strcmp((char *)pacb->appHeader->name, (char *)TargetApp) == 0)
localize(self, XR_stringPtr(XR_NativeLanguage));

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

60 Chapter 7: Flash Application Layout

/
This app can be deleted if Target app does not exist or Target app is
not running.

Fkkkkdkkokokok /
BOOL candelete(pFrame self)

{
Access_AMS_Global_Variables;

ApplD targetID = EV_getAppID(TargetApp);

return targetID == H_NULL ||
(targetID '= EV_appA && targetlD !'= EV_appB);
}

7.3.4.2. How Localization Works

Applications call XR_stringPtr to look up a string given a string number. When
XR_stringPtr looks up a string, it starts with the frame pointed to by the ACB
(Application Control Block) of the currently executing application (app identified
by EV_currentApp). The prototype chain of the object frame is searched for the
given string number. An unsuccessful search of the prototype chain tries again
with the prototype chain of the frame’s parent and ultimately to the system frame.

A language localizer app installs a new language by adding a new frame of
strings at the head of the target app’s object chain.

Here is how app frames are linked together before a localizer is installed.

0 | 0 | system frame

ACB ———p 5 0 | app attributes & strings

Figure 7.3: Linked App Frames

The above figure illustrates an app frame with a parent link but no prototype link.
A string search would begin with the app frame then proceed to the system
frame.

After installing a localizer, the ACB is redirected to point first to the localizer
frame.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 7: Flash Application Layout 61

0 | 0 | system frame

ACB ‘ 0 | app attributes & strings

‘ ? hook frame

localizer frames —

localizer strings

/
s
C_/o observer frame

Figure 7.4: Redirected App Frame

The ACB now points to the hook frame installed in RAM by the localizer app with
a call to OO_InstallAppHookByName . Now when XR_stringPtr looks up a
string, it starts with the hook frame in RAM. Since the hook frame has no
attributes, the search continues down the prototype chain to the localizer app’s
frames. The translated string is found in the localizer’s string frame.

Not all strings need to be translated. If searching the localizer prototype chain
proves unsuccessful, the search continues with the parent of the hook frame,
picking up the search again in the app’s prototype chain.

The search is quick — the header of each frame indicates the range of attributes
in the frame body. No need to search a frame if the header says the sought
attribute is not there. Disjoint ranges of string numbers can be placed in different
frames and linked together through their prototype fields.

The observer frame at the bottom of the figure above lets the localizer app peek
at every event sent to the target app. The localizer app uninstalls its language
hook when it sees the target app is about to be deleted or moved. It can reinstall
its hook when it sees the target app has finished a move.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

62 Chapter 7: Flash Application Layout

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

63

Integrating a Flash Application

8.1.

8.1.1.

Mode Settings

A user can change the mode settings by either using the MODE screen or by
executing the TI-BASIC setMode function. When any mode settings have
changed, the array where they are stored is updated appropriately. In addition,
all applications are sent a CM_MODE_CHANGE event message. The mode
notification flags in the event message indicate which mode settings changed.
Applications can ignore this message or test to see if a mode setting has
changed that it needs to react to in some way. For instance, the application may
need to set its window dirty flag (WF_DIRTY) if certain mode settings change
that trigger a CM_WPAINT event message (requiring the application to update its
windows). An example of testing for mode notification flags follows:

#include "tiams.h"
AP_myApp(pFrame self, Event *e)

switch (e->command)

{

case CM_MODE_CHANGE:
if (1((e->info.modelnfo.notifyFlags & MO_NOTIFY_SPLIT) ||
(e->info.modelnfo.notifyFlags & MO_NOTIFY_VECTOR_FORMAT) ||
(e->info.modelnfo.notifyFlags & MO_NOTIFY_PRETTY_PRINT)))
wAppwindow.Flags |= WF_DIRTY;

break;

default:
EV_defaultHandler(e);
break;
}
}

Mode Notification Flags

MO_NOTIFY_FOLDER — Current folder has changed.
MO_NOTIFY_GRAPH_COUNT — 2 graph mode or 1 graph mode.
MO_NOTIFY_GRAPH _TYPE_1 — Graph mode change.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

64 Chapter 8: Integrating a Flash Application

MO_NOTIFY_GRAPH_TYPE_2 — Graph mode change for graph 2 if in 2
graph mode.
MO_NOTIFY_SPLIT — The screen size has changed.
MO_NOTIFY_ANGLE — Angle mode has changed.
MO_NOTIFY_PRECISION — Precision has changed between
EXACT, APPROX, and AUTO.
MO_NOTIFY_FIX — Fix digits or float precision change.
MO_NOTIFY_NUMBER_FORMAT — Exponential format: Normal, scientific
or engineering.
MO_NOTIFY_VECTOR_FORMAT — Rectangular, cylindrical or spherical.
MO_NOTIFY_COMPLEX_FORMAT — Real, rectangular or polar.
MO_NOTIFY_PRETTY_PRINT — Pretty Print on or off.
MO_NOTIFY_UNIT_SYSTEM — SI, ENG/US or CUSTOM unit system.
MO_NOTIFY_BASE — DEC, HEX or BIN base.
MO_NOTIFY_LANGUAGE — Language mode has changed.
8.1.1.1. Modifying Mode Settings Within an App

The mode settings can be modified within an application by calling

MO _currentOptions to get the current mode settings into the mode option array,
MO_option . After modifying the mode setting options, a call to
MO_digestOptions will cause the new mode settings to take affect by sending
out the appropriate mode notification messages.

A simple example of setting the split screen ratio to the 50/50 setting follows:

MO __currentOptions();
MO_option[MO_OPT_SPLIT_RATIO] = D_SPLIT_RATIO_1_1;
MO_digestOptions(H_NULL);

8.1.1.2. MO _option Array and Settings
Index Setting Description
0 MO_OPT_CURRENT_FOLDER
1 MO_OPT_SPLIT_SCREEN D_MODE_SPLIT_FULL=1,

D_MODE_SPLIT_HORIZONTAL,
D_MODE_SPLIT_VERTICAL

2 MO_OPT NUMBER OF GRAPHS D_MODE_GRAPHS_1=1,
D_MODE_GRAPHS 2

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 8: Integrating a Flash Application

65

Index Setting

3 MO_OPT_GRAPH_TYPE_1

4 MO_OPT_GRAPH_TYPE_2

5 MO_OPT_SPLIT_ 1

6 MO_OPT_SPLIT 2

7 MO_OPT_SPLIT_RATIO

8 MO_OPT_ANGLE

9 MO_OPT_PRECISION

10 MO_OPT_FIX

11 MO_OPT_NUMBER_FORMAT

12

13

MO_OPT_VECTOR_FORMAT

MO_OPT_COMPLEX_FORMAT

Description

D_GRAPH_TYPE_FUNCTION=1,
D_GRAPH_TYPE_PARAMETRIC,
D_GRAPH_TYPE_POLAR,
D_GRAPH_TYPE_SEQUENCE,
D_GRAPH_TYPE_3D,
D_GRAPH_TYPE_DIFF_EQUATIONS

D_GRAPH_TYPE_FUNCTION=1,
D_GRAPH_TYPE_PARAMETRIC,
D_GRAPH_TYPE_POLAR,
D_GRAPH_TYPE_SEQUENCE,
D_GRAPH_TYPE_3D,
D_GRAPH_TYPE_DIFF_EQUATIONS

The app ID which is implemented as the
memory handle of the first application’s
Application Control Block.

The app ID which is implemented as the
memory handle of the second application’s
Application Control Block.

D_SPLIT_RATIO_1_1=1,
D_SPLIT_RATIO 1 _2,
D_SPLIT_RATIO 2 1

D_ANGLE_RAD=1, D_ANGLE_DEG

D_PREC_AUTO=1, D_PREC_RATIONAL,
D_PREC_APPROX

D_PREC_FIX 0=1,D_PREC FIX 1,
D_PREC_FIX_2,D_PREC _FIX_3,
D_PREC_FIX_4,D_PREC_FIX_5,
D_PREC_FIX_6,D_PREC FIX 7,
D_PREC_FIX_8,D_PREC FIX 9,
D_PREC_FIX_10,D_PREC FIX 11,

D _PREC _FIX_12,D_PREC FLOAT,
D_PREC_FLOAT 1,D_PREC_FLOAT 2,
D_PREC_FLOAT 3,D_PREC_FLOAT 4,
D_PREC_FLOAT 5,D_PREC_FLOAT 6,
D_PREC_FLOAT 7,D_PREC_FLOAT 8,
D_PREC_FLOAT 9,D_PREC_FLOAT 10,
D_PREC_FLOAT 11,D_PREC FLOAT 12

D_EXP_FORMAT_NORMAL=1,
D_EXP_FORMAT_SCl,
D_EXP_FORMAT_ENG

D_VECT_RECT=1, D_VECT_CVYL,
D_VECT_SPH

D_COMPLEX_OFF=1,
D_COMPLEX_RECT,
D_COMPLEX_POLAR

TI-89 / TI-92 Plus Developer Guide

Not for Distribution

Beta Version January 26, 2001

66 Chapter 8: Integrating a Flash Application

Index Setting Description

14 MO_OPT_PRETTY_PRINT D_OFF=1, D_ON

15 MO_OPT_BASE D_DEC=1, D_HEX, D_BIN

16 MO_OPT_UNIT_SYSTEM D_UNIT_SI=1, D_UNIT_US,

D_UNIT_CUSTOM

17 MO_OPT_UNIT_DEFAULTS D_UNIT_DEFAULTS=1

18 MO_OPT_LANGUAGE 1 for English or Appld of language app.
8.2. Switching to the Home Screen

Under certain circumstances such as low memory, an application may need to
quit and default back to the Home screen application. If the calculator is in full
screen then simply exiting the application using EV_quit will cause the Home
screen application to start. If the calculator is in split screen, then the mode
setting for the split screen side the application is running on needs to be set to
the Home screen application’s ID. The following example demonstrates how to
quit the current application and switch to the Home screen:

volatile HANDLE HomelD = H_NULL,;
MO_currentOptions();

/* If in full screen, just quit to switch to home */

if (MO_option[MO_OPT_SPLIT_SCREEN] == D_MODE_SPLIT_FULL)
EV_quit();
else {

[* If in split screen, set the appropriate side to home. */
I* AMS behavior is such that if home was already on one side,
it will become full screen. */

HomelD = EV_getAppID((const UCHAR *) "TIHOME");

if (MO_option[MO_OPT_SPLIT_1] == appID)
MO_option[MO_OPT_SPLIT_1] = HomelD;

if (MO_option[MO_OPT_SPLIT_2] == applID)
MO_option[MO_OPT_SPLIT_2] = HomelD;

MO_digestOptions(H_NULL);

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 8: Integrating a Flash Application 67

8.3.

8.3.1.

8.3.2.

Catalog

Built-in Functions and Commands

Pressing the key displays the operating system'’s built-in functions and
commands. As the cursor is moved through the list, help for the particular
function or command is displayed in the status line as shown in Figure 8.1.

F1: Help on the Catalog toolbar displays a catalog help dialog box that contains
the help message from the status line (including text that may have been
truncated due to the size limitations of the status line) as shown in Figure 8.2.

Ti CATHLOG j
Fi T Fe T Fx &
Help|Built—in|Flash Apps|Uzer-Defined

Showstat
signt
simyltd
=ing
sind
sinht
Sinktc
SinRe
Fsolue
SortH —

|_| ,_SortD J
ECUATIOMVAE

Figure 8.1: Catalog

i CATALOG |
-

Fi Fo T Fz F4
Help|Built—in|Flash Apps|lser-Defined

ShowSt ot
= Helr y

=

=| EQUATION, VAR

=\ ¢ESC=CAMNCEL

S1RFrtL

hSiTEE
al Fzolue -
—1 SartH [=
|_|5 SortD _
AW EAD AUTO FUMC 1/%=0

Figure 8.2: Catalog Help Dialog

User-Defined Functions and Programs

User-defined functions and programs can utilize the status line help and F1: Help
by placing a comment as the first statement of the function or program as shown
in Figure 8.3. The comment text will be the help message displayed in the status
line and in the F1: Help dialog. Once in the catalog, if any user-defined functions
or programs exist then the F4: User-Defined catalog toolbar selection item will be
available. The function key will display the user-defined functions and

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

68

Chapter 8: Integrating a Flash Application

|’F1 T 5 Fav [Fu™|_FE FE™
- E Control |[I-<0Uar|Find. Hn:-deT

=EP091(}
N

I
=ETﬁ15 iz a help string from proglil]
tEndPram

HMAIM EAD AUTO FUMC

Figure 8.3: User Program

1 CATALOG |
-

Fi T Fz T] F
Help|Built—in|Flash Apps|Usetr—Defined
bprogll ..., afolder
progll rmain
Pprogle zfolder
u
@3 _
FAIN RAD AUTD FUHC 1430

Figure 8.4: User-Defined Catalog

1 CATALOG |
-

Fi T Fe Fx &
Help|Built—-in|Flash Apps|Ulser—Defined

FEF" ! I-LH-zw y
Fl This iz a help string from
proglcl

ESC=CAMCEL

RN EAD AUTO FUHE 1/E0

Figure 8.5: Help Dialog for User-Defined Catalog

programs. If the program or function has a comment as its first statement, then
the comment text will be displayed on the status line as the cursor is moved
through the list (see Figure 8.4). Pressing the F1: Help function key will display
the comment text in a catalog help dialog box as shown in Figure 8.5. The list of
user-defined functions and programs is displayed in alphabetical order by the
program or function name. The folder name where the function or program is
located is displayed to the right of the function or program name.

TI-89 / TI-92 Plus Developer Guide Not for Distribution

Beta Version January 26, 2001

Chapter 8: Integrating a Flash Application 69

8.3.3. Flash App Extensions

Flash applications can install functions and programs called App Extensions that
are available to the rest of the system. The F3: Flash Apps catalog toolbar
selection item will be available if any of the Flash applications loaded in the
calculator installed App Extensions. Pressing the [F3] function key will display the
list of App Extensions in alphabetical order by function name with the name of
the application that installed the App Extension to the right of the function or
program name.

An example of defining App Extensions and App Help Strings within an
application follows:

/* Applet strings */

#define STR_appfunc 0
#define STR_appprog 1
#define STR_HELP (100)

void main(pFrame, PEvent);

APP_EXTENSION const appExtensions][] =

{
[* func name #, help string # func index */
{OO0_APPSTRING+STR_appfunc, OO_APPSTRING+STR_HELP+STR_appfunc, STR_appfunc},
{OO_APPSTRING+STR_appprog, OO_APPSTRING+STR_HELP+STR_appprog, STR_appprog},

%

APP_EXT_ENTRY const appExtEntries[] =
{
{appfunc, APP_EXT_FUNCTION},
{appprog, APP_EXT_PROGRAM},

I3

FRAME(appObj, OO_SYSTEM_FRAME, 0, 00_APP_FLAGS, 11)
ATTR(OO_APP_FLAGS, APP_INTERACTIVE)
ATTR(OO_APP_NAME, "App")

ATTR(OO_APP_TOK_NAME, "TIAPP")
ATTR(OO_APP_PROCESS_EVENT, &main)
ATTR(OO_APP_EXT_COUNT, 2)
ATTR(OO_APP_EXTENSIONS, appExtensions)
ATTR(OO_APP_EXT_ENTRIES, appExtEntries)

[* The STR_appfunc string "appfunc" appears in the F2 Flash App
catalog listing with the OO_APP_TOK_NAME "TIAPP" -
appfunc(. .. TIAPP */

ATTR(OO_APPSTRING+STR_appfunc, "appfunc")
ATTR(OO_APPSTRING+STR_appprog, "appprog")

[* The STR_HELP+STR_appfunc string "app function help" appears in the
Status Line when the cursor is on this function and also in the F1
Help Dialog box */

ATTR(OO_APPSTRING+STR_HELP+STR_appfunc, "app function help")
ATTR(OO_APPSTRING+STR_HELP+STR_appprog, "app program help")
ENDFRAME

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

70 Chapter 8: Integrating a Flash Application

8.4. Interfacing with TI-BASIC

An app can directly call many of the TI-BASIC commands. These commands
begin with “cmd_" and are included in Appendix A . The C callable TI-BASIC
functions or operators usually begin with “push_". Examples include clearing the
program I/O screen with the cmd_clrio routine and writing to the program I/O
screen using the cmd_disp routine. An example function is push_getfold which
is the TI-BASIC getFold function. TI-BASIC uses the expression stack (estack) to
pass and return parameters. See chapter 15. Expressions and the Expression
Stack for a description of this stack and its contents. For a description of the data
types used by TI-BASIC see chapter 14. Data Types.

An app can also embed entire TI-BASIC programs or data. In fact, an app can
consist of essentially nothing but TI-BASIC programs and data as shown in the
following example. This example loads a TI-BASIC program using its StoProg
function (which can store any TI-BASIC data item). The tokenized version of the
program is in the proglData array. This array came from the TI-GRAPH LINK™
file containing the program. The program is run by using RunProg. The example
program merely displays “Test” to the Program 1/O screen. After the program
runs, it is deleted. The TIBASIC_run function handles all errors including the

key (to break the app). In this way, the user of the app does not even know a
TI-BASIC program is running.

/* BASIC -> APP Wrapper */

#include "product.h”
#include "tiams.h"

static void AP_app(pFrame self, PEvent e);
#define ProgEnd(Prog) (Prog+(sizeof(Prog) - 1))

FRAME(appObj, 00_SYSTEM_FRAME, 0, 00_APP_FLAGS, 3)
ATTR(OO_APP_FLAGS, APP_INTERACTIVE)
ATTR(OO_APP_NAME, "progl")
ATTR(OO_APP_PROCESS_EVENT, &AP_app)

ENDFRAME

pFrame pAppObj = (pFrame)&appObj;
runningBASIC = FALSE;

const BYTE proglData[]={0X00,0X1D,0XE9,0X12,0XE4,0X00,0XE8,0XE5,0X51,
0XE4,0X02,0XE8,0XE5,0X00,0X54,0X65,0X73,0X74,0X00,0X2D,0X7A,0XE4,
0X02,0XE8,0X19,0XE4,0XE5,0X00,0X00,0X00,0XDC},

/* Run a BASIC program */
HANDLE TIBASIC_run(HANDLE hProgram, SINT *errNo)
{

Access_AMS_Global_Variables;

EStackindex savetop = top_estack;

USHORT errOffset;

HANDLE hTokenized = H_NULL;

HANDLE hResult = H_NULL;

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 8: Integrating a Flash Application

71

*errNo = ER_OKAY;
TRY
TRY
runningBASIC = TRUE;

if (NG_tokenize(hProgram, errNo, &errOffset)) {

hTokenized = HS_popEStack();

NG_execute(hTokenized, NG_DONT_APPROXIMATE);

if (top_estack != savetop)
hResult = HS_popEStack();
}
FINALLY
runningBASIC = FALSE;
HeapFreelndir(&hTokenized);
top_estack = savetop;
reset_control_flags();
ENDFINAL
ONERR
*errNo = errCode;
ENDTRY
return hResult;

}

[* Store Prog to symbol table, returning hVal of program if success. */
HANDLE StoProg(char *ProgName, const BYTE *Prog)

{
BYTE nameBUf[MAX_SYM_LEN];

HSYM hsym;
SYM_ENTRY *SymPtr;
HANDLE hval =H_NULL;

WORD ProgSize = (Prog[0] * 256 + Prog[1]) + 2;

TRY

if (FS_OK == TokenizeName(ProgName, nameBuf)) {

cmd_delvar(TokNameRight(nameBuf));

if (hsym=VarStore(TokNameRight(nameBuf), STOF_NONE,

ProgSize, ProgEnd(Prog)))

{
if (SymPtr = DerefSym(hsym)) {
if (hVal = SymPtr->hVal)
memcpy(HeapDeref(hVal), Prog, ProgSize);
}
}
}
ONERR
ERD_dialog(errCode, FALSE);
return O;
ENDTRY
return hval;

}

BOOL RunProg(char *ProgName)
{ HANDLE hCommand, hResult;
char *pCommand,;
SINT errCode;

TI-89 / TI-92 Plus Developer Guide Not for Distribution

Beta Version January 26, 2001

72 Chapter 8: Integrating a Flash Application

if (hCommand = HeapAlloc(80)) {
strcpy(pCommand = HeapDeref(hCommand), ProgName);
strcat(pCommand, "()");
if (hResult = TIBASIC_run(hCommand, &errCode))
HeapFree(hResult);
HeapFree(hCommand);
if (errCode) {
ERD_dialog(errCode, FALSE);
return(FALSE);
}
}
return TRUE;

}

void DelVar(char *varName)

{
BYTE nameBuf[MAX_SYM_LEN];

TRY
if (FS_OK == TokenizeName(varName, nameBuf))
cmd_delvar(TokNameRight(nameBuf));
ONERR
ENDTRY

}

static void AP_app(pFrame self, PEvent e)

{
HANDLE hVal;

switch (e->command) {
case CM_ACTIVATE:
if (IrunningBASIC) {
push_quantum(END_TAG);
EV_defaultHandler(e);
if (StoProg("progl", proglData))
RunProg("progl");
DelVar("progl");
EV_quit();
}
break;
case CM_QUIT:
break;
default:
EV_defaultHandler(e);
break;

The previous example showed how to run a TI-BASIC program from an
application. If an application just needs to execute a function or expression to
return some value then the following example will do that. The function
tCmdLineDriver below inputs a string from the user using a dialog box. It then
calls the function CmdLine to execute that string and return a value. The return
value is stored to a global variable, E1. If there is an error then an error dialog is
displayed. The CmdLine function will evaluate the string and return a value on
the estack. It will not evaluate anything that has side effects — that is the

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 8: Integrating a Flash Application 73

expression to be evaluated may not store to any global variables, perform any
kind of 1/0 (displaying values on the Home screen, graphing, and so on), or
cause a switch to another application.

[* Evaluate the expression pointed to by pExpr (must be locked if in
the heap).

*/

SINT CmdLine(char *pExpr)

{ Access_AMS_Global_Variables;
SINT errNo;

SET_SIDE_EFFECTS_FORBIDDEN; // No I/O or programs

TRY
push_quantum(END_OF_SEGMENT_TAG);
push_parse_text((BYTE *) pExpr);
push_simplify_statements(top_estack);
errNo = ER_OKAY;

ONERR
errNo = errCode;

ENDTRY

SET_SIDE_EFFECTS_PERMITTED;

return errNo;

}

void tCmdLineDriver(void)
{ Access_AMS_Global_Variables;
SINT errNo;
EStackindex saveTop;
BYTE el[] ={0,'¢','1',0};
char szBuf[256];

memset(szBuf, 0, sizeof(szBuf));
strepy(szBuf, "solve(x*x+3x-3=0,x)");
while (KB_ENTER == Dialog(&dGetStr,-1,-1, szBuf, NULL)) {
saveTop = top_estack;
if (errNo = CmdLine(szBuf))
ERD_dialog(errNo, FALSE);
else {
DlgNotice("OK", "Answer stored in 'el™);
VarStore(e1+3, STOF_ESI, 0, top_estack);
}
top_estack = saveTop;
}
}

/* Resource for tCmdLineDriver */
DIALOG dGetStr, 0, 0, NoCallBack

{
EDIT, {0,8, 15}, ™, 0, 251, 34
HEADER, {0, 0, 0}, "Enter expression, ESC to exit", PDB_OK, PDB_CANCEL
XFLAGS, {0,0, 0}, XF_ALLOW_VARLINK | XF_VARLINK_SELECT_ONLY,0,0,0

}

In the CmdLine example above, the SET_SIDE_EFFECTS_FORBIDDEN and
SET_SIDE_EFFECTS_ PERMITTED macros can be removed in order to run
TI-BASIC commands. This will cause no problems for an app if the user enters
define or store commands. Or if the app itself issues the commands, it can know

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

74 Chapter 8: Integrating a Flash Application

ahead of time which commands it will execute. Commands that will cause a
problem are those such as Graph or DspThl. These commands, along with
several others, cause a context switch which the app must handle. See the
example app in section 8.4 Interfacing with TI-BASIC (specifically the
runningBASIC flag) for how to handle the context switch.

For an example on executing a command with side effects, see section
17.2 Working with the Graph Application

8.5. Verifying the OS Version

Version 2.04 of the AMS introduced F-Line instructions to call the API. This
requires an app to run on Operating System Version 2.04 and later but can
reduce every API call from six bytes to two bytes. This is the standard calling
mechanism when using the tiams.h include file. Accessing AMS global variables
requires the use of the Access_AMS_Global_Variables macro and each AMS
global variable reference requires six bytes plus the overhead from the

Access AMS_Global_Variables macro.

In order to ensure your app is running in AMS 2.04 and later put a call to the
OS_NeedMinimumVersion macro at the top of your app's event handler. It
needs to be called before any F-Line instructions (an AMS 2.04 feature) are
executed. Its format is:

OS_NeedMinimumVersion (frame, major, minor)

frame — The name of the variable which contains the address of your
application frame.

major — Major version number of required OS level.
minor — Minor version number of required OS level.

For example, if you have a pointer to your app frame named pAppOb;:
pFrame pAppObj = (pFrame)&appObj;

Then at the top of your event handler entry point call:
OS_NeedMinimumVersion(pAppObj, 2, 4);

This checks for OS release 2.04 or greater. If the OS is an earlier version, a flag
is set in the app's ACB disabling the app so it will not appear in the app’s menu.
This macro returns to the OS without letting the rest of the event handler run.

Be aware that some F-Line calls may not be immediately apparent. If an app
uses a library or API routine (say a long divide or any API call) in its local variable
initialization, an F-Line may be inserted to call the library routine and is always
used to call the API.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 8: Integrating a Flash Application 75

8.6.

F-Lines can also be used to convert long calls or jumps to relative jumps or calls
which reduces the app's relocation table and hence the app’s size. See section
7.1 File Format for a description of the relocation table.

Optimizing Code Space

One of the optimizations involves reducing the apps relocation table. All
references to an app’s global variables made by an app require a relocation entry
to be stored with the app. If there are multiple references to a particular global
variable in an app, the global references can be replaced with local pointers as
shown in the example below.

static WINDOW appW;
static WIN_RECT appWRect;

void AP_EventHandler(pFrame self, PEvent e) {
WINDOW *winPtr = &appW;

switch (e->command) {
case CM_START:
appWRect = *(e->info.startInfo.startRect);
if (WinOpen(winPtr, &appWRect, WF_TTY | WF_DUP_SCR))
WinClr(winPtr);
else
EV_quit();
break;
case CM_ACTIVATE:
EV_defaultHandler(e);
WinBeginPaint(winPtr);
WinActivate(winPtr);
WinStr(winPtr, "Just activated\n");
break;

}
}

In the preceding example, since there were several references to the global
variable appW the pointer winPtr was initialized to the address of appW at the
entry point to the AP_EventHandler routine and used instead of &appW. Since
there was only one additional reference to appWRect an additional pointer to
access that global was not created.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

76 Chapter 8: Integrating a Flash Application

8.7. VAR-LINK

The VAR-LINK screen can be activated by pressing the [VAR-LINK] key or directly
by using the handleVarLinkKey routine (Appendix A). By default, VAR-LINK is
disabled within a dialog box. It can be enabled by using the
XF_ALLOW_VARLINK flag. See section 11.4 Dialog Boxes for further details.

VAR-LINK can also view files (3rd party data types) generated by an app. An app
must have an OO_APP_VIEWER entry in its frame to specify a routine to view
files (see chapter 7. Flash Application Layout for a description of FRAME
attributes). The prototype for the app viewer is as follows:

BOOL LocAppViewer (AppID appID, BYTE * type, WINDOW * vIWin,

HSYM hSym)
applD — The app’s ID.
type — A pointer to a one to four character string containing the file type of the file

to be displayed.

viwin — Pointer to a WINDOW structure that the app can draw to display the
contents of the file.

hSym — The HSYM of the file to display.

If the app handles the specific view request it must return TRUE, if not it should
return FALSE and the next app in the list of apps will be given a chance to view
the file. See the FOpen routine for an example app viewer.

In terms of sample code see the VarCreateFolderPopup routine for the source
to VAR-LINK's F2 (view) key.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

77

Application Control Flow

9.1.

Event-Driven Architecture

The Tl AMS Operating System (OS) implements an event-driven architecture.
After initializing the system, the operating system goes into a loop checking each
hardware device for an event such as a keypress or clock tick. When a device
indicates it needs processing, the OS packages information about the event into
a message and sends it to the currently active application.

If none of the devices need attention, the window list is scanned for a dirty
window, that is to say, a window which needs to be repainted. A message (see
CM_WPAINT in section 9.3. Commands) is sent to the window’'s owner
application indicating it needs to repaint its window.

After all dirty windows have been redrawn, a null message (CM_NULL) is sent to
the current application. Then the calculator is put into low power idle mode. Any
hardware interrupt brings the calculator out of low power mode and starts the
event scan at the top of the loop.

An application receives messages from the OS through its main entry point. A
simplified overview of an application’s main entry point follows:

#include "tiams.h"

TERecord terec;
AP_myApp(pFrame self, Event *event)

{

switch (event->command)

{
case CM_START:

break;

case CM_KEY_PRESS:

if (! TE_handleEvent(&terec, event))
EV_defaultHandler(event);
break;

case CM_WPAINT:

break;

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

78 Chapter 9: Application Control Flow

default:
EV_defaultHandler(event);
break;

}
}

The application’s main entry point has two parameters — a pointer to the
application’s frame and a pointer to an event notification structure. The
application typically utilizes a switch statement to decode what kind of event it
received. The appropriate case label then acts on the event accordingly.

Events which are not picked out by any case label are given default handling by
the routine EV_defaultHandler . The application may choose to modify the
default behavior of some events by acting on them then passing them on to
EV_defaultHandler .

The application relinquishes control to the operating system after handling an
event by returning from its main entry point.

9.2. Event Structure Layout

typedef struct SEvent
{
UINT command;
UINT sourcelD;
UINT side;
UINT status;
union
{
Eventinfo eventlnfo;
Keylnfo keylnfo;
Pastelnfo pastelnfo;
PasteHandlelnfo pasteHandlelnfo;
Paintinfo paintinfo;
Startinfo startinfo;
Menulnfo menulnfo;
Modelnfo modelnfo;
} info;
} Event, *PEvent;

command — A command number encoding which event occurred. This may be,
among others, a keyboard event, a message from the window system,
or an application-to-application message. See the next section
(9.3. Commands) for details about each command type.

sourcelD — The ID of the application which originated the event—usually the
application which is currently running.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 9: Application Control Flow 79

side

status

info

— Which side of the screen the application’s window occupies. An
application sharing the screen with another application in split screen
mode can tell which side of the screen it is on, either AP_SIDE_A for
the top or left side, or AP_SIDE_B for the bottom or right side.

— A copy of many of the status flags when the event occurred. This
includes the state of the [2nd], [¢], and keyboard modifier keys,
angle mode setting, busy indicator, and so forth.

— Event dependent information. It may specify keypress information,
string paste pointer or handle, the address of which window to repaint,
application start up information, or new mode settings.

9.3. Commands

The type of an event can be identified by the contents of the command field of
the Event structure. Command numbers have symbolic names defined in tiams.h.

0x001 —

0x500 —

0x700 —

0x700

0x701

Ox4FF Built-in strings

Character strings are kept together in a table for ease of language
customization. The menu system uses command numbers in this
range as an index into the string table. The default event handler
converts these commands into CM_PASTE_STRING events
containing the cross-referenced string pointer.

Ox6FF Application-specific commands
Menu choices specific to each application.

0x7BF System commands
0OS-generated commands.

CM_NULL

Sent to the active application when there are no other events to
process. The application might use this event to take care of some
background processing or update an animated display.

CM_INIT

Sent to each application once when the calculator is reset or
batteries are inserted. This command is used principally by the
built-in applications. The CM_INSTALL command is better suited
for initializing Flash applications.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

80

Chapter 9: Application Control Flow

0x702

0x703

0x704

0x705

0x706

0x707

CM_START

Sent to an application when it is being started. Included in the start
message is a rectangle with the requested window location and
size chosen by the user from the mode screen settings. This
rectangle is passed into WinOpen to create the application’s initial
window. Some applications display a Current/Open/New submenu
on the APPS menu. The startCode field of the start message
(Startinfo) tells the application which submenu command the user
chose.

CM_ACTIVATE

More than one application may be visible on the screen, but only
one at a time can interact with the user. The activate message is
sent to an application to designate it as the interactive center of
attention. Most event messages are directed to the active
application until it receives a deactivate message.

The active application should highlight its window border to make
it apparent to the user which window is active.

The default event handler displays the application’s registered
menu.

CM_FOCUS

Tells the application to turn on its cursor flash. This message is
normally handled by the text editor event handler. See
TE_handleEvent .

CM_UNFOCUS

Tells the application to turn off its cursor flash. This message is
normally handled by the text editor event handler. See
TE_handleEvent.

CM_DEACTIVATE

Sent to the active application to inform it that it no longer holds the
interactive center of attention.

The default event handler calls MenuEnd to release registered
menu memory.

CM_QUIT

Tells the application to prepare to quit. The application should
save its data and release any memory handles it allocated.

TI-89 / TI-92 Plus Developer Guide

Not for Distribution Beta Version January 26, 2001

Chapter 9: Application Control Flow 81

0x708

0x709

Ox70A

0x70B

0x70C

0x70D

0x70E

0x70F

0x710

CM_RESTART

Notifies the current application that the user has chosen to start
the same application from the APPS menu. Applications may
choose to ignore this command and there is no default handling.

Reserved

Reserved

CM_ON
Sent to each application when the calculator is turned on after

being turned off with ([2ND] [OFF]). This command is not sent if
the calculator is turned on after automatic power down.

CM_INSTALL

Sent to an application just after it has been installed in the
calculator. This message is sent to applications which are already
in Flash memory when batteries are inserted or when the
calculator is reset. This message is also sent to an application just
after it has been downloaded into Flash memory through the link
port.

CM_UNINSTALL
Sent to an application just before it is deleted from Flash memory.

CM_PACK

Informs an application that it is about to be moved to another
address in Flash memory. The OS sends this message before it
begins garbage collection after deleting another Flash application.
The application must save any state information it needs.

CM_UNPACK

Sent to an application after Flash memory garbage collection is
complete. The application uses this opportunity to restore state
information it saved when it received the CM_PACK message.

CM_KEY_PRESS

Sent when a key is pressed on the calculator keyboard. This
message tells the application which key was pressed. Keypresses
include ASCII characters (0x20 — Ox7E), extended ASCII
characters (0x80 — OxFF), control characters and special symbols
(Ox00 — Ox1F, and 0x7F), and extended key codes (>= 0x100)
such as function keys and the cursor arrow keys. The application
usually forwards extended key codes to the default event handler
for further processing.

TI-89 / TI-92 Plus Developer Guide

Not for Distribution Beta Version January 26, 2001

82

Chapter 9: Application Control Flow

0x720

0x721

0x722

0x723

0x724

0x725

0x726

ox727

0x730

0x740

0x750

CM_CUT

Cut selected text to the clipboard. This and the following text
editing commands are generated by menu choices or translated
from CM_KEY_PRESS commands by the default event handler.
Text edit commands are usually handled by the default text edit
handler. See TE_handleEvent .

CM_COPY
Copy selected text to the clipboard.

CM_PASTE

Paste text in clipboard to edit buffer at cursor position. Any
selected text is replaced.

CM_PASTE_STRING

Paste text from a string. The event message includes a pointer to
the string to paste.

CM_PASTE_HANDLE

Paste text from a handle. The event message includes a handle to
the string to paste. The handle is released back to the heap by the
default text edit handler after the paste is complete.

CM_DELETE
Delete selected text. If no text is selected, delete one character to
the left of the cursor.

CM_CLEAR

Clear selected text. If no text is selected, clear from cursor to end
of edit buffer. If cursor is at end of edit buffer, clear all text from
edit buffer.

CM_CLEAR_ALL
Clear everything. The application decides what it means to clear
everything.
CM_TOGGLE_INSERT
Switch between text insert mode and overstrike mode. This
command is implemented in the default text edit handler.
CM_CURSOR_FLASH
Show or hide the text cursor. This command is generated every
half second by the timer.
CM_STO

Store key was pressed. The default event handler translates
this command into the - character.

TI-89 / TI-92 Plus Developer Guide

Not for Distribution Beta Version January 26, 2001

Chapter 9: Application Control Flow

0x751

0x760

0x770

0x771

ox772

0x773

0x774

0x780

0x781

0x782

CM_RCL

Recall key [RcL] was pressed. The default event handler displays a

dialog box for the user to enter the name of a variable to recall.
The chosen variable’s contents are pasted at the edit cursor.

CM_WPAINT
Sent to an application when one of its windows needs to be
repainted. The event message includes a pointer to the window
which needs updating.

CM_OPEN
Open variable. This and the following commands are sent when

the user chooses one of the commands from the Tools menu. The

application should save the variable it is working on and prompt
the user for the name of another variable to open. See VarOpen.

CM_SAVE_AS

Save application data in a variable. The application prompts the
user for the name of a new variable. See VarSaveAs .

CM_NEW

Create a new empty variable. The application should save the
variable it is working on and prompt the user for the name of a
new variable to create. See VarNew.

CM_FORMAT
Prompt the user for application preferences.

CM_ABOUT
Display information about the application.

CM_MODE_CHANGE

Sent to every application when mode settings have been changed
on the MODE screen or by the TI-BASIC setMode function. Flags

in the event message indicate which mode settings changed.

CM_SWITCH_GRAPH

Sent to every application when the user switches between graphs

in two-graph mode.

CM_DEFAULTS

Sent to every application when the user selects
F1: Reset, 1: RAM, 2: Default from the MEMORY screen. Each

application should reset its preferences back to its factory settings

when it receives this message.

TI-89 / TI-92 Plus Developer Guide

Not for Distribution Beta Version January 26, 2001

84

Chapter 9: Application Control Flow

9.4.

0x7C0 — OX7FF Interapplication messages

Some of the built-in applications send messages to each other
with this range of commands, but this means of communicating
between applications is not recommended. Interapplication
messaging is largely replaced with an object-oriented approach.
Applications communicate with each other through their frame
interface.

0x800 — OXxFFF Application string numbers

Applications should index the text of their menus, dialog boxes,
and error messages in this range of command numbers.

Starting and Stopping an Application

The calculator OS starts an application by sending it the CM_START message. A
field in the start message points to a window rectangle. This rectangle defines
the window location and size previously established by the user with split window
mode settings. The application should pass this rectangle to WinOpen to create
its initial window. This is also a good time to initialize data structures.

The APPS menu displays a submenu of start up options for some applications.
The start message tells the application which option the user chose: Current,
Open...,orNew....

The OS then sends the application a CM_ACTIVATE message. The activate
message tells the application that it is now the current active application. The
application should build and display its dynamic menu or pass the event
message to EV_defaultHandler to display its static menu. The application
should also call WinActivate to highlight its window border.

Finally, the OS sends the CM_FOCUS message. The application usually lets text
edit or default event handling process this event. If, however, the application
cannot start for some reason, this is the time to deal with it. It is only after this
third message is received that the application can force a quit and return to the
Home screen if there is insufficient memory or some other condition is incorrect
for the application to start normally.

The above three messages, CM_START, CM_ACTIVATE, and CM_FOCUS, are
sent at the start of every application. The application now begins to receive a
stream of events corresponding to user inputs.

When the user chooses another application from the APPS menu, the OS
terminates the current application by sending it three messages, CM_UNFOCUS,
CM_DEACTIVATE, and CM_QUIT in that order.

Text edit usually handles the CM_UNFOCUS message. The application may
ignore this message if it does not have an open text edit field.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 9: Application Control Flow 85

When the application receives the CM_DEACTIVATE message, it should call
WinDeactivate to unhighlight its window, then forward the message to the
default event handler which releases menu memory resources.

The CM_QUIT message tells the application to save the user’'s work and close its
window (WinClose).

If the user has the calculator in split screen mode, he can switch the focus to the
application on the other side of the screen. When this happens, the application
receives CM_UNFOCUS and CM_DEACTIVATE messages in that order. When
the user switches focus back to the application, it receives CM_ACTIVATE and
CM_FOCUS messages.

The user may select the same application from the key as the application
already running. The application receives the CM_RESTART command. This is
important for applications which have a Current/Open/New submenu on the
APPS menu. The user’s choice from the submenu is sent in a field of the restart
event message.

9.5. Keyboard Events

The application receives a CM_KEY_PRESS message when the user presses a
key on the calculator keyboard. The message includes which key was pressed.

The OS provides default behavior for most keypress messages. The application
should check for and process significant keypresses. Keypresses the app does
not understand should be passed to EV_defaultHandler , which implements
system wide behavior for keys such as [MODE], [APPS], [CATALOG], etc.

The application can pass keypress messages to the text editor’s event handler
(TE_handleEvent) if it has an active text edit field in its window.
TE_handleEvent returns TRUE if it acted on the event. The application should
test the return value of TE_handleEvent and pass the message to
EV_defaultHandler if the text editor did not act on the message.

9.6. Menu Processing

Each item in a menu has associated with it a command number. The OS uses
the command number to communicate to the application which menu item the
user chose. Menu processing proceeds as follows.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

86 Chapter 9: Application Control Flow

1. The user invokes menu processing by pressing one of the function keys

2. The OS sends the function-key press ([F1] . . . [F8]) to the application as a
CM_KEY_PRESS event.

3. The application forwards the event to the default event handler
(EV_defaultHandler).

4. The default event handler looks up the application’s current menu (attribute
OO_APP_DEFAULT_MENU_HANDLE in the application’s frame).

5. The default event handler calls MenuKey on the application’s current menu
to start user interaction with the menu.

6. MenuKey returns the command number of the user’'s chosen menu item.

7. Default event handler sends the command number as an event to the
application.

Note: The application’s event handler entry point is called recursively by the above process,
first with the CM_KEY_PRESS message then a nested call with the menu item
command number. Applications must be re-entrant since default event handling often
entails translating one type of command into another type. The application receives the
translated message through its event handler entry point as a recursive call from the
default event handler.

The OS automatically processes function-key presses ([F1] . . . [F8)) only if the
application has placed a menu handle where the default event handler can find it.
The OS looks for a handle to the current menu in the
OO_APP_DEFAULT_MENU_HANDLE attribute of the application’s frame. The
software developer can construct static menus with the resource compiler and
link them to the application when the application is created, or an application can
build a dynamic menu at run time.

9.6.1. Static Menus

Static menus are easy to create and simple to use. If your application has very
modest menu requirements, static menus are the better choice. Since static
menus are handled transparently by the default event handler, the application
needs no extra code to deal with function keypresses. Menus are automatically
drawn when the application is activated, function keypresses are passed to the
menu system, and menu memory is released when the application is
deactivated. Incidentally, all the built-in applications employ static menus.

See section 11.5. Resource Compiler on how to compose a menu source file
and use the resource compiler to create an object file suitable for linking with
your application.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 9: Application Control Flow 87

The application should be compiled with the address of its menu in its
OO_APP_DEFAULT_MENU frame attribute.

When an application receives a CM_ACTIVATE message, default event handling
checks the application’s OO_APP_DEFAULT_MENU attribute. If it finds a pointer
to a menu there, it calls MenuBegin to draw the menu across the top of the
calculator screen, and saves a handle to the menu in application frame attribute
OO_APP_DEFAULT_MENU_HANDLE.

Default event handling of CM_DEACTIVATE calls MenuEnd on the application’s
current menu and frees the menu handle.

9.6.2. Dynamic Menus

An application may need to change menu contents based on its current state. In
this case, the application needs to take a more active role in building menus,
managing menu memory, and setting up the user interface.

Creating a new menu — an application uses MenuNew and MenuAddText to
create dynamic menus. The application then calls SetAppDefaultMenuHandle
to place the new menu’s handle in the application’s frame where default event
handling can find it for function-key processing.

Disposing of a menu — an application disposes of a menu by calling MenuEnd
to release its memory resources and
SetAppDefaultMenuHandle(MY_APP_ID(MyAppObj), H_NULL) to unregister the menu

with the default event handler.

The application must be able to display a dynamic menu when the application is
activated and change menus while the application is active. Default event
handling automatically releases menu resources when the application is
deactivated.

An application is activated when it receives the CM_ACTIVATE message from
the OS. The application should respond to this message by creating a new menu
as described above.

An application changes menus by disposing of the current menu and creating a
new menu.

Default handling of the CM_DEACTIVATE event automatically frees the
application’s menu handle and sets attribute
OO_APP_DEFAULT_MENU_HANDLE to H_NULL.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

88 Chapter 9: Application Control Flow

9.7. Paint Events

The CM_WPAINT message tells the application to repaint its window. The
address of which window to paint is included in the message in case the
application has more than one window. The application should call
WinBeginPaint , then any other window drawing routines, then WinEndPaint .

9.8. Background Events

Applications can arrange to receive time for background processing. This allows
an application to execute on a time-available basis even when it is not the focus
of interactive events. The OS sends CM_BACKGROUND messages only to
applications which have the APP_BACKGROUND flag set in the
OO_APP_FLAGS attribute of their object frames (see section 7.3.1.3. Object
Frame Attributes).

CM_BACKGROUND messages are very low priority. Only after all device events,
dirty window repaint messages, and the null event have been sent to the current
application are background events sent out. Every application which has its
APP_BACKGROUND flag set is then sent a CM_BACKGROUND message.
Background applications will continue to get CM_BACKGROUND messages until
the OS determines a higher priority message must be sent to the current
application.

Note: Applications should keep background processing short so as not to degrade the
response of interactive applications.

9.9. Default Event Handler

The simplest application for the AMS Operating System does nothing more than
forward its events to the default event handler, EV_defaultHandler . Such a
simple application does not display a window and does not respond in any visible
way to keypresses from the user. While a truly useful application must respond to
some events, it is helpful to know what happens to events which the app does
not handle. The action provided by the default event handler is, in many cases,
already sufficient and needs no further elaboration in the application.

Many events have no default action and, unless they are listed in this section, are
discarded when they get to the default event handler.

9.9.1. CM_KEY_PRESS

The info.keylInfo.keyCode field of the CM_KEY_PRESS event contains a value
indicating which key the user pressed. Many keypresses are translated into a

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 9: Application Control Flow

89

string of characters and sent to the current application as a CM_PASTE_STRING
command. Those keypresses and their translated string are listed below.

Keypress Translated String
KB_ANS Ans(1)
KB_SIN sin(
KB_ASIN sin(
KB_COS cos(
KB_ACOS cos’(
KB_TAN tan(
KB_ATAN tan’(
KB_LN In(
KB_ALN e’
KB_INV_X (TI-92 Plus only) A.
KB_INFINITY (TI-89 only) o
KB_UNDER_SCORE (TI-89 only) B
KB_THETA (TI-89 only) 0
KB_AMPER (TI-89 only) &
KB_ATSIGN (TI-89 only) @
KB_EXCLAM (TI-89 only) !
KB_COPYRIGHT (TI-89 only) ©
KB_SIGMA (TI-92 Plus only) (
KB_INTEGRAL I
KB_DIFF d(
KB_ROOT v(
KB_OPTION +'0' <
KB_OPTION + '=' £
KB_OPTION + "]

Table 9.1: Keypress Translations

Several keypresses initiate special handling.

TI-89 / TI-92 Plus Developer Guide

Not for Distribution

Beta Version January 26, 2001

90

Chapter 9: Application Control Flow

Keypress IAction
KB_STO Sends CM_STO command to the current app.
KB_RCL Sends CM_RCL command to the current app.

KB_F1 through KB_F8

Initiates menu processing using the menu registered by
the current app. The menu item chosen by the user is
sent as a command to the current app.

KB_SWITCH

Switches focus between apps on each side of screen, or
between current and previous app.

KB_VARLINK

Displays the VAR-LINK screen. If the user presses
on a variable name, the name is sentin a
CM_PASTE_HANDLE message to the current app.

KB_CHAR

Displays the CHAR pop-up menu. The chosen character
is sentin a CM_PASTE_HANDLE message to the
current app.

KB_CATLG

Displays the CATALOG. The chosen function or
command name is sent in a CM_PASTE_HANDLE
message to the current app.

KB_UNITS

Displays the UNITS dialog box. The chosen unit is sent
ina CM_PASTE_HANDLE message to the current app.

KB_MATH

Displays the MATH pop-up menu. The chosen function is
sentin a CM_PASTE_HANDLE message to the current

app.

KB_CUSTOM

Toggles the custom menu on and off.

KB_MODE

Displays and processes the MODE screen. If any mode
settings are changed, a CM_MODE_CHANGE message
is sent to every application.

KB_MENU

Displays the APPLICATIONS pop-up menu. If an
application is chosen from the menu, the current app is
terminated and the chosen app is started.

KB_FLASH_APPS

Displays the FLASH APPLICATIONS pop-up menu. If an
application is chosen from the menu, the current app is
terminated and the chosen app is started.

KB_MEM

Displays the MEMORY dialog box.

KB_INSERT

Sends the CM_TOGGLE_INSERT command to the

current application.

Table 9.2 Keypress Actions

TI-89 / TI-92 Plus Developer Guide

Not for Distribution

Beta Version January 26, 2001

Chapter 9: Application Control Flow 91

Keypress IAction

KB_QUIT Terminates the current app and switches to the Home
screen.

KB_COPY Sends the CM_COPY command to the current app.

KB_PASTE Sends the CM_PASTE command to the current app.

KB_CUT Sends the CM_CUT command to the current app.

KB_DELETE Sends the CM_DELETE command to the current app.

KB_CLEAR Sends the CM_CLEAR command to the current app.

KB_OPEN Sends the CM_OPEN command to the current app.

KB_SAVE_AS Sends the CM_SAVE_AS command to the current app.

KB_NEW Sends the CM_NEW command to the current app.

KB_FORMAT Sends the CM_FORMAT command to the current app.

KB_HELP_KEYS Displays a map of additional keyboard character
translations.

KB_HOME Starts the Home screen.

KB_YEQ Starts the [Y=] editor.

KB_RANGE Starts the Window screen.

KB_GRAPH Starts the grapher.

KB_TBLSET Displays the TABLE SETUP dialog box.

KB_TABLE Starts the Table app.

KB_OFF Switches to the Home screen and turns the calculator off.

KB_OPTION + KB_OFF Turns the calculator off.

Table 9.2 Keypress Actions (continued)

9.9.2. CM_PASTE_STRING

The application usually passes this command to a text edit field. However, if the
CM_PASTE_STRING is not handled by the application, the default event handler
breaks the paste string up and feeds each character back to the app in
CM_KEY_PRESS events.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

92

Chapter 9: Application Control Flow

9.9.3.

9.9.4.

9.9.5.

9.9.6.

9.9.7.

9.10.

CM_PASTE_HANDLE

The application usually passes this command to a text edit field. If the app does
not handle this event, the default event handler breaks up the string in the handle
and feeds each character back to the app in CM_KEY_PRESS events. The
handle is then automatically freed after the last character has been sent to the
current app.

CM_STO

This command sends a store character » in a CM_KEY_PRESS event to the
current app.

CM_RCL

This command displays and processes the RECALL dialog box to get the name
of a variable. It then sends the contents of the variable to the current app in a
CM_PASTE_HANDLE event.

CM_DEACTIVATE

This command turns off the custom menu (CustomEnd) or the running app’s
menu (MenuEnd), whichever is active. This is part of the automatic menu
handling described in section 9.6. Menu Processing .

CM_ACTIVATE

This command turns on (MenuBegin) the running app’s menu. This is part of the
automatic menu handling described in section 9.6. Menu Processing .

Installing, Moving, and Deleting an Application

The OS sends CM_INSTALL to an application after it is downloaded into Flash
memory, and when the calculator is reset. The OS allocates RAM for the
application’s data segment, zeros uninitialized static variables and sets the
values of initialized static variables. Any additional initialization which the
application needs to perform once when it is installed should be done at this time.

The OS calls the AppNoticelnstall method of every application in the calculator
when a new application is installed. App localizers use this notice to watch for
applications which need to be overridden with local language string tables. See
AppNoticelnstall application method in section 7.3.1.3.17. Method
OO_APP_NOTICE_INSTALL (0x11) .

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 9: Application Control Flow 93

Sometimes an application needs to be moved to another place in Flash memory.
This can happen when another application is deleted and the OS garbage
collects to free up unused Flash memory. The application receives a CM_PACK
command before garbage collect begins then CM_UNPACK after garbage collect
ends. The application’s static data is reinitialized when this happens, hence the
application needs to perform much the same initialization as if it received the
CM_INSTALL message.

Alternatively, there is a four-byte location (publicstorage) in the application’s
ACB (Application Control Block) where the app can store a value during
CM_PACK processing which can be retrieved during CM_UNPACK processing.
If the application has a lot of data to save, it can allocate memory from the heap
and store its handle in publicstorage . When the application receives the unpack
message, it retrieves the memory handle from publicstorage , reinitializes its
data, and releases the handle. Use routines OO_appSetPublicStorage and
OO_appGetPublicStorage to save and retrieve your application’s

publicstorage

Note: An application will never receive pack/unpack messages while it is active. The
application will always have been terminated (that is, received the CM_QUIT message)
before it is moved.

The OS sends CM_UNINSTALL to an application as final notification when it is
about to be deleted. Any memory handles the application allocated when it was
installed or while it was active should be deleted at this time to prevent memory
leaks.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

94 Chapter 9: Application Control Flow

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

95

10. Error Handling

This chapter describes the Advanced Mathematics Software (AMS)
implementation of error handling — how to throw errors, why you might want to
throw an error, how to catch errors, and how to clean up when an error occurs.

10.1. Throwing an Error

Your application or ASM program can signal exceptional conditions by throwing
an error. Calling ER_throwVar in your app diverts execution to an error handler,
typically the system error handler. ER_throwVar accepts one argument, an
integer in the range 0 to OXEFF. System error numbers range from 0x000 to
Ox7FF. Application-defined errors begin at OO_FIRST_APP_STRING (0x800).
Look in tiams.h for macros beginning with ER_ for predefined error numbers. An
error message is associated with each predefined error number.

Perhaps the condition most frequently needing special attention is the case when
HeapAlloc cannot fulfill a request for memory. HeapAlloc returns H_NULL if it
cannot allocate the requested amount of memory. Your app should always test
the return value of HeapAlloc . Under most circumstances, if your app cannot
allocate the memory it needs, it should throw an error.
h = HeapAlloc(BUF_SIZE);
if (h == H_NULL)

ER_throwVar(ER_MEMORY); /* error number defined in tiams.h */

The system error handler catches this error and displays a dialog box indicating
there was a memory error.

Note: Think of ER_throwVar as a long jump rather than a subroutine call. Execution does not
return from the ER_throwVar call.

Some AMS routines may throw an error instead of returning an error code.
HeapAllocThrow , for example, tries to allocate memory but throws the
ER_MEMORE&rror automatically if it fails.

Macro ER_throw works like ER_throwVar but accepts only integer constants.
The Sierra C™ compiler generates more compact code for the ER_throw macro.

10.2. Delayed Error Messages

You should not throw an error while processing events CM_START,
CM_ACTIVATE, CM_FOCUS, CM_UNFOCUS, CM_DEACTIVATE, CM_QUIT,
CM_WPAINT, CM_INSTALL, CM_UNINSTALL, CM_PACK, CM_UNPACK,

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

96 Chapter 10: Error Handling

CM_INIT, or CM_MODE_CHANGE. If your app hits an error condition while
processing one of these events, it should store an explanatory error code
number in EV_errorCode , then return to the OS. The OS will then display the
error message dialog box.

It is best to steer clear of signaling error messages while processing these
events. If, however, you cannot avoid exceptions, keep in mind that
EV_errorCode can hold only a single error code. If your app stores to
EV_errorCode multiple times before returning to the OS, only the last error code
will be displayed in an error dialog box.

10.3. Throwing Your Own Errors

Your application may have exceptional conditions which are not properly
described by any of the built-in error messages. Error numbers beginning at
OO_FIRST_APP_STRING (0x800 — OXEFF) are available for application-specific
errors. Whenever your code throws an error number in this range, the system
error handler looks for the text of the error message in the current application.

Place the text of your error messages in the frame of your application beginning
with attribute OO_FIRST_STRING. Then, if your app throws error number
OO_FIRST_APP_STRING + 1, for example, then the system error handler will
display the text of string OO_FIRST_STRING + OO_FIRST_APP_STRING + 1.
See section 7.3.1.1. FRAME for a discussion of how to lay out an application
frame and where to put your strings in the frame.

Sometimes your application is not the current app. If you use ER_throwVar to
throw an application error when another application is the current app, the
system error handler will look for the text of the error message in the other app.
This can happen when another app calls routines in your shared-code library or
when a TI-BASIC program calls an extension function defined in your app. How
do you throw application errors if your app is not the current app?
ER_throwFrame to the rescue!

ER_throwFrame takes two arguments — the error number and a pointer to your
application frame. The system error handler looks in the given app frame for the

text of your error message. Your shared-code routines and TI-BASIC extensions
should always use ER_throwFrame to throw application errors.

Note: The second parameter to ER_throwFrame should be the variable containing your app’s
pointer to frame described in section 7.3.1.2. Pointer to FRAME . Installing a language
localizer for your app links in a new frame ahead of your app frame by updating your
pointer to frame. During a subsequent call to ER_throwFrame , the system error handler
will look first for the text of your error message in the language localizer.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 10: Error Handling 97

10.4.

10.5.

Catching Errors

Sometimes, you would like your application to catch error conditions rather than
allowing the system error handler to display an error message. The TRY,
ONERR, and ENDTRY macros are used together to give your app control over
error conditions.
TRY

[* code which can throw an error */
ONERR

[* execution continues here only if an error was thrown above */
ENDTRY

Begin a block of code which can throw an error with the TRY macro. If
ER_throwVar is called anywhere in the TRY block, even in a called subroutine,
execution is immediately transferred to the ONERR block.

Within the ONERR block, the error number thrown in the TRY block is available
in local int variable errCode. Code in the ONERR block can test errCode to
determine what kind of error occurred and take appropriate action. Variable
errCode, because it is local to the ONERR block, cannot be referenced outside
the ONERR block.

Execution in the ONERR block flows through the end of the block to the
ENDTRY macro. Alternatively, code in the ONERR block may execute the PASS
macro to throw the error on up to the next higher enclosing TRY block or call
ER_throwVar with a different error number to raise another exception.

TRY blocks can be nested.

Cleaning Up

Many times you want to catch errors so you can clean up after the code which
threw the error. If, for example, your app needs to allocate several memory
handles, but any of them could fail because of low memory conditions, your app
should release the handles which were successfully allocated before passing the
memory error on up to the system error handler. Otherwise your app will leak
memory.

volatile HANDLE h1 = H_NULL, h2 = H_NULL, h3 = H_NULL;
TRY
h1l = HeapAllocThrow(BUF1_SIZE);
h2 = HeapAllocThrow(BUF2_SIZE);
h3 = HeapAllocThrow(BUF3_SIZE);
ONERR
HeapFreelndir(&h1);
HeapFreelndir(&h2);
PASS;
ENDTRY

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

98

Chapter 10: Error Handling

10.6.

10.6.1.

Handle variables h1, h2, and h3 must be initialized to H_NULL so the error
handling block can distinguish between allocated and unallocated handles.
HeapAllocThrow returns a memory handle (a value other than H_NULL) if it
succeeds. If HeapAllocThrow fails, it throws ER_MEMORY, thereby transferring
execution to the ONERR block. HeapFreelndir frees the handle if it is non-null
and sets the variable back to H_NULL. The ONERR block is skipped if the entire
TRY block is executed without throwing an error.

Sometimes your app needs to clean up after a section of code whether an error
occurs or not. TRY ... FINALLY ... ENDFINAL blocks are helpful in this case.
volatile HANDLE h1 = H_NULL, h2 = H_NULL;

TRY

hl = HeapAllocThrow(BUF1_SIZE);
h2 = HeapAllocThrow(BUF2_SIZE);

. I* do something with handles h1 and h2 */

FINALLY
[* free handles hl and h2 */
HeapFreelndir(&h1l);
HeapFreelndir(&h2);
ENDFINAL

If any error is thrown in the TRY block, execution transfers to the FINALLY block
where handles hl and h2 are released, if necessary, and the error is passed on
up. If no error is thrown, the remainder of the TRY block is executed, memory
handles hl and h2 are released in the FINALLY block, and execution continues
after the ENDFINAL macro.

The FINALLY block is always executed, thus guaranteeing that handles h1 and
h2 will be freed.

TRY ... ENDFINAL blocks and TRY ... ENDTRY blocks can be nested within
each other.

Caveats

You should be aware of some coding and design issues dealing with raising and
catching exceptions.

Jumping Out of TRY Blocks

Do not do it. Jumping out of TRY blocks causes big trouble. TRY blocks maintain
a stack of saved execution contexts in order to determine where execution
should resume when an error is thrown. The TRY stack is automatically popped
when an error is thrown or when an ONERR or FINALLY macro is reached. It is
very important that the code in a TRY block does nothing to corrupt the TRY
stack.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 10: Error Handling 99

10.6.2.

10.6.3.

Specifically:
« Do not execute a return statement out of a TRY block.
« Do not execute a goto statement out of a TRY block.

Executing any code which bypasses popping the TRY stack will probably cause
the calculator to crash the next time an error is thrown.

There is a way to return or goto out of a TRY block if you absolutely must. The
trick is to pop the TRY stack yourself before leaving the TRY block. This can be
accomplished by calling ER_success just before the goto or return statement.

Referencing Auto Variables in ONERR/FINALLY Blocks

The TRY macro saves many of the CPU registers on its execution context stack.
Consequently, when an error is thrown, all variables which reside in CPU
registers are reset to their contents before the TRY macro was called. This is
only a problem with auto variables — global and static variables are never kept in
CPU registers. If code in an ONERR or FINALLY block needs the value of a
variable set in the TRY block, the code must arrange to make sure the C code
optimizer does not put that variable in a CPU register. This can be accomplished
by declaring such variables to be volatile. So, remember this rule:

Auto variables changed in a TRY block must be declared volatile if they are
referenced in an ONERR or FINALLY block.

Where Not to Throw Errors
One last reminder:

« Do not throw errors while processing events CM_START, CM_ACTIVATE,
CM_FOCUS, CM_UNFOCUS, CM_DEACTIVATE, CM_QUIT, CM_WPAINT,
CM_INSTALL, CM_UNINSTALL, CM_PACK, CM_UNPACK, CM_INIT, or
CM_MODE_CHANGE.

See section 10.2. Delayed Error Messages for details on how to signal
exceptions under these circumstances.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

100 Chapter 10: Error Handling

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

101

11. Creating the User Interface

As explained in chapter 4. User Interface Overview , the user interface consists
of windows, menus, dialog boxes, fonts, and the status line. This chapter will
present more detail on windows, menus and dialog boxes along with common
structures shared by all three of these components. The resource compiler,
which converts resource files into object code, will also be discussed. Finally, a
detailed example of an application that uses windows, menus, and dialog boxes
will be presented.

11.1. Common Screen Components

Windows, menus, and dialog boxes all use several common components. These
components include the screen region and coordinate typedefs — SCR_RECT,
SCR_COORDS,; the bitmap structure — BITMAP; and the icon structure —
ICON.

11.1.1. Screen/Window Regions and Coordinates

Although windows are based on window coordinates (signed short values —
WIN_COORDS), the screen is limited to only unsigned char coordinates —
SCR_COORDS. Because of this, there are two separate structures that define a
region on the screen: SCR_RECT and WIN_RECT. A region defines a
rectangular area. The x0, yO coordinates of a region specify the upper left
coordinates; the x1, y1 coordinates specify the lower right coordinates. The
SCR_RECT structure is based on SCR_COORDS whereas the WIN_RECT
structure is based on WIN_COORDS. While the WINDOW structure uses
SCR_RECT regions internally, all calls to window routines use window region
and coordinates.

SCREEN WINDOW
typedef unsigned char SCR_COORDS; typedef signed short WIN_COORDS;
typedef union { typedef struct {
struct { WIN_COORDS x0, y0;
SCR_COORDS x0, y0; WIN_COORDS x1, y1;
SCR_COORDS x1, y1; } WIN_RECT;
Fxy;
unsigned long |;
} SCR_RECT;

Table 11.1: Screen vs. Window Coordinates

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

102 Chapter 11: Creating the User Interface

SCR_RECTs are defined as a union since the four bytes that define the
coordinates can also be represented by an unsigned long value. There is a
global SCR_RECT called ScrRect that defines the entire writeable region of the
screen. This includes the area normally reserved for an app’s menu but does
NOT include the status line. This area can be changed by interrupt routines in
response to keystrokes, and is not available to write to under normal
circumstances.

11.1.2. BITMAP

BITMAPSs are used to store or retrieve rectangular regions on a window. They
can also be used for cursors (text or graphic), to do animation, to highlight areas
on the screen, and as images in menus (along with ICONs). A BITMAP is defined
as follows:
typedef struct {

WORD NumRows;

WORD NumcCols;

BYTE Data[1];
} BITMAP;

A BITMAP must always have one or more rows and one or more columns so its
size is always at least 5 bytes long. The macro BITMAP_HDR_SIZE defines the
size of the BITMAP header (4 bytes). The CalcBitmapSize routine calculates the
size given a pointer to a BITMAP structure.

11.1.3. ICON

An ICON can be thought of as a fixed 16x16 bitmap. Since ICONs do not have
the BITMAP header, they cannot be used interchangeably with BITMAPS. They
are stored as an array of 16 unsigned shorts (WORD). ICONs are normally only
used in MENUSs.

11.2. Windows

The Window routines provide a method to write to the screen of the calculator.
Each active window must have an associated WINDOW structure. The Window
routines use the WIN_RECT structure (defined in section 11.1.1. Screen/Window
Regions and Coordinates) to define regions. Coordinates are all specified by the
WIN_COORDS type.

All screen 10 must go through an opened window. Windows are opened with the
WinOpen function. The windows in the system are linked together so that when
a window is closed, the system can walk the list of windows to determine which
windows are dirty and therefore need to be repainted. Hence, it is important for
an app to close its window when done to remove it from the linked-list of

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 11: Creating the User Interface 103

windows. When an application is started (gets the CM_START message), it gets
a WIN_RECT that defines the region of its window. This region is based on
whether the calculator is in full or split screen mode and the side of the screen
split of the current app. An app can create additional windows which may
overlap.

11.2.1. Window Regions and Coordinates

A window region is limited to a rectangular area defined by two coordinate pairs:
an x, y pair that defines the upper left corner of the region and an x, y pair that
defines the lower right corner of the region. All window region coordinates are
represented as signed 16-bit numbers. The coordinate (0O, 0) is the upper left
corner of a region. Since coordinates may be negative, the coordinate (-1, -1) is
up one pixel and over one pixel to the left of the coordinate (O, 0).

A window has three regions associated with it. The first region, the actual
window, is the region that was defined when the window was created. The
second region is the area of that window that may be drawn to, the client region.
If the window is full screen (not counting the application’s menu or the status bar
which may not be overlapped), then the client region is equal to the window
region. The client region is reduced by adding borders or a title to a window.
Each window also has a clipping region which is a subset of the client region.
Initially, the clipping region is equal to the client region but it may be changed by
the app with the SetWinClip routine. The following graphic illustrates the three
window regions.

Screen W indow

Client

Clip

Figure 11.1: Window Regions

Real windows are limited to the size of the screen. Virtual windows are allocated
a bitmap in memory and are limited to unsigned coordinates of the region

(0, 0) ... (255, 255). The size of the virtual window must not exceed the
maximum allowable block of heap memory.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

104

Chapter 11: Creating the User Interface

11.2.2. Window Routines

The following is a complete list of all of the Window routines. It is split into two
sections: the main window routines and utility routines.

WinActivate
WinAttr
WinBackground

WinBackupToScr
WinBeginPaint

WinBitmapGet
WinBitmapPut
WinBitmapSize
WinBitmapSizeExt

WinChar
WinCharXyY
WinClose
WinClr
WinDeactivate

WinDupStat

WinEllipse
WinEndPaint

WinFill
WinFillTriangle
WinFont
WinHeight
WinHide

WinHome

WinLine
WinLineExt

WinLineRel

Make a window the current active window.
Set the attribute for the next write to a window.

Change the current default attribute for the
background of a window.

Copy a window's duplicate screen to the real screen.

Save the current screen state and set up the screen to
draw for the current window.

Retrieve a BITMAP from a window.
Store a BITMAP to a window.
Calculate the size of a BITMAP in a window.

Calculate a BITMAP size including negative
coordinates.

Write a character at the current pen position.
Write a character to a specific location.
Close a window.

Clear a window.

Deactivate a window, making the next window the
active window.

Enable/disable duplicate writes to a window (opened
with WF_DUP_SCR).

Draw an ellipse to a window.

Restore the current screen state that was saved with
the corresponding WinBeginPaint .

Fill a region of a window.

Draw a filled triangle.

Change the font for a window.

Return the height of a window’s client region.

Mark a window as not visible so that it is never
activated by the system.

Move the pen location for a window to the home
position.

Draw a line to a window.

Draw a line using the slower but more accurate
clipping code.

Draw a line relative to the current pen location.

TI-89 / TI-92 Plus Developer Guide

Not for Distribution Beta Version January 26, 2001

Chapter 11: Creating the User Interface

WinLineTo — Draw a line from the current pen location.

WinMoveRel — Move the current pen location relative to its current
position.

WinMoveTo — Move the current pen location.

WinOpen — Open a window.

WinPixGet — Return the status of an individual pixel (on or off).

WinPixSet — Set a pixel.

WinRect — Draw a rectangle.

WinRemove — Close a window with the option to not update the
screen.

WinReOpen — Reopen a window keeping the duplicate image if the
window’s size does not change.

WinScrollH — Scroll a region horizontally.

WinScrollV — Scroll a region vertically.

WinStr — Write a string to the current pen location.

WinStrXy — Write a string to a specific location.

WinWidth — Return the width of a window’s client region.

Additionally, there are several utility routines for working with windows.

CalcBitmapSize — Calculate the size of a bitmap given a pointer to a
BITMAP structure.
ClientToScr — Merge two SCR_RECTs.

DrawWinBorder

Redraw the border for a window.

MakeWinRect — Create a WIN_RECT.
MakeScrRect — Create a SCR_RECT.
ScrToWin — Convert a SCR_RECT structure to a WIN_RECT
structure.
SetWinClip — Set the clipping region for a window.
11.3. Menus

105

There are two menu types: toolbars and pop-ups. Pop-ups are, for the most part,
toolbars without a menu bar, however, they may have a title (for an example see
Figure 4.2). Menus are limited to three levels (not counting the menu bar).

Menus are divided into two categories: static and dynamic. Examples of both are
included at the end of this chapter. Like all resources, the text strings in a menu
can be localized by using string reference numbers instead of actual text.
Internally, menus are kept as a MENU structure that contain one or more
MENU_ITEM structures at the end. Static menus are created with the resource

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

106 Chapter 11: Creating the User Interface

compiler and the data structures defining them reside in Flash. Static menus can
be loaded into RAM with the MenuLoad function so that they can be modified
just like dynamic menus. After dynamic menus are created, they must be locked
and remain locked while they are in use so they do not move (since MenuBegin
is passed a direct pointer to a MENU structure).

11.3.1. Menu-Draw Structure

Menus require a separate RAM based structure to be built which is created by
MenuBegin, the menu-draw structure. This RAM based structure contains,
among other things, flags for checkmarks and enabled items as well as other
structures for maintaining the menu. Pop-ups only need a menu-draw structure if
they need menu-like features: checkmarks or enable/disable features. In that
case, use the PopupBegin /PopupBeginDo functions. Dynamic menus are
created at run-time and reside entirely in RAM.

11.3.2. Menu IDs

Each menu item is assigned an identifier. By default these identifiers range from
1 up to the number of menu items in the menu. Menus created with the resource
compiler can have symbolic names assigned to each menu item. These names
are stored in a header file with the same base-name as the resource file only with
a .h extension added. The default identifier numbers can be overridden if needed
in the resource file. Dynamic menu items are also humbered sequentially starting
at 1 by default, but the number may also be overridden. The example at the end
of this chapter (see 11.6. Example) uses overridden menu IDs. See the example
in the MenuTopStat function entry point for an example that uses symbolic
names.

Each item in a menu or pop-up contains either a text string, an ICON or a
BITMAP. Use DynMenuAdd or DynMenuChange to add or change menu items
in a dynamic menu. There are some older routines, MenuAddIcon
MenuAddText , and PopupAddText , for specifically adding icons or text but
these routines do not need to be used. See section 11.5. Resource Compiler for
more information about using BITMAPS in a menu.

11.3.3. Menu Routines

DynMenuAdd — Add a new entry (text, icon, or bitmap) to a dynamic
menu or pop-up.

DynMenuChange — Change an entry in a dynamic menu or pop-up.

FKeyl_H — For the given function key, return its index relative to
KB_F1.

MenuAddicon — Add an icon entry to a dynamic menu.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 11: Creating the User Interface 107

MenuAddText
MenuBegin

MenuCheck

MenuEnd

MenuFlags

MenuGetTopRedef

MenultemDef
MenuKey
MenuLoad

MenuNew
MenuOff
MenuOn
MenuPopup

MenuSubStat
MenuTopRedef

MenuTopSelect

MenuTopStat
PopupAddText
PopupBegin

PopupBeginDo
PopupClear

PopupDo
PopupNew

Add a text entry to a dynamic menu.

Begin the use of a menu by allocating a menu-draw
structure and drawing the menu'’s top-level.

Set, clear, flip, or return the status of a check mark for
a menu item.

End the use of a menu, freeing the menu-draw
structure.

Return the flag word for a dynamic menu/pop-up
structure.

Return the current value of a redefinable top-level
menu item.

Given a menu ID, return a pointer to the text, ICON, or
BITMAP defining it.

Handle a key for a menu returning the menu item
selected.

Begin a dynamically created menu, using a static
menu as the starting point.

Begin a dynamically created menu.
Gray-out the top-level of a menu.
Draw the top-level of a menu.

Execute a static pop-up as defined by the resource
compiler, returning the item selected.

Enable or disable a sublevel menu item.

Redefine a top-level menu item ICON for a menu that
was started with the MBF_REDEF flag.

Select a top-level menu item by drawing a thick box
around the menu item.

Enable or disable a top-level menu item.
Add a text entry to a dynamic pop-up.

Allocate a menu-draw structure for a dynamic pop-up
so that the pop-up items can have the enable / disable
or checkmark features of menus.

Execute a dynamically allocated pop-up using the
handle returned by PopupBegin .

Clear all entries of a dynamically created pop-up.
Execute a dynamic pop-up created by PopupNew .
Begin a dynamically created pop-up, use
DynMenuAdd or DynMenuChange to add to or
change the pop-up.

TI-89 / TI-92 Plus Developer Guide

Not for Distribution Beta Version January 26, 2001

108

Chapter 11: Creating the User Interface

11.4.

11.4.1.

PopupText — Return a pointer to the text of a dynamically created
pop-up.
QMenuTopSelect — Return the currently selected top-level menu item as

set by MenuTopSelect .

Dialog Boxes

Dialogs, like menus, can be either static or dynamic. The text strings in a dialog
can be localized by using string reference numbers instead of actual text.
Internally, dialogs are kept as a DIALOG structure that contain one or more
DIALOG_ITEMS structures at the end. Static dialogs are created with the
resource compiler and the data structures defining them reside in Flash. The only
routine that handles static dialogs is the Dialog function. Dynamic dialogs are
created with DialogNew and new fields can be added with DialogAdd . Dynamic
dialogs are executed with the DialogDo function. Dialogs use a call-back routine
to communicate with the caller as the user interacts with the dialog box.
Call-backs are explained later in section 11.4.4. Dialog Call-Backs .

Dialog Routines

Dialog — Open a dialog box and handle all keys pressed by the
user until the dialog box is closed, returning any
modified dialog box items.

DialogAdd — Add an item to a dynamic dialog box.

DialogDo — Works like Dialog only for dynamically created dialog
boxes.

DialogNew — There are several utility routines for working with and
creating standard dialog boxes.

DlgMessage — Execute a system created dialog with a title and a
word-wrapped message.

DIgNotice — Macro: DigMessage (Title, Msg, PDB_OK, 0).

DrawStaticButton — Utility routine to draw dialog box style buttons at the
bottom of a window.

VarNew — Create a standard NEW dialog box.

VarOpen — Create a standard OPEN dialog box.

VarSaveAs — Create a standard SAVE COPY OF dialog box.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 11: Creating the User Interface 109

11.4.2.

11.4.2.1.

11.4.2.2.

11.4.2.3.

Dialog Fields

A dialog box consists of one or more fields. For a static dialog box these fields
are defined in a structure which is compiled by the resource compiler into a
DIALOG structure. There are some differences between the fields added with
DialogAdd and those created with the resource compiler.

* Precede each of the field types listed below with “D_" to use as the dialog
type to pass to DialogAdd . For an example, see the DialogNew function.

« HPOPUP can only be passed to DialogAdd , since resources cannot specify
handles.

« DYNHEADER is only available on the resource compiler, since the header
text can be specified at the time the header is created.

For a dynamic dialog box, each field is added to the dialog box by calling the
DialogAdd function. The fields are defined in the following paragraphs. Every
field has an associated x and y coordinate which is relative to the dialog box (not
the screen) and a flag byte. The flag byte values are explained after all of the
dialog fields.

Field Index

Each dialog field is assigned a field index starting with zero. For static dialogs
this is based on the order they are defined in the resource file. For dynamic
dialogs, it is the order they are added with the DialogAdd function. This field
index is passed through the dialog’s call-back function as explained in this
section and the call-back section.

DYNPOPUP char * TextPtr, HANDLE (* GetPopup) (WORD),
WORD OptionListindex

The TextPtr and OptionListindex parameters are the same as for a normal
POPUP field. Instead of using the name/address of a statically created pop-up,
the address of a function that returns the address of a dynamically created
pop-up is used. The pop-up may still be statically created but this allows for the
possibility of passing one of several different pop-ups. The GetPopup routine is
called with a single value which is the DYNPOPUP's field index.

EDIT_FIELD char * TextPtr, WORD bOffset, WORD Flen, WORD Dlen

An EDIT_FIELD is drawn as a box with an optional title. An empty string, " , is
used to indicate no title. The field is defined by a string which labels the box, an
offset into the FieldBuf array passed to Dialog (bOffset), the total length of the
field in the Buffer array (Flen), and a display length in characters, not pixels
(Dlen). The data in the Buffer array is copied to the display when Dialog is first

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

110 Chapter 11: Creating the User Interface

called. The data is assumed to be a zero-terminated string of characters and is
returned as such. See DialogNew for an example. The call-back is called each
time the edit field is modified. See section 11.4.4. Dialog Call-Backs for a
description of the events involved.

11.4.2.4. HEADER char * TextPtr, WORD /Button, WORD rButton

A HEADER field is a static field which defines the title of a dialog box. The field is
defined by a zero-terminated string. Two optional fields may follow: a left
predefined button and a right predefined button. If you do not want predefined
buttons when using DialogAdd then you must still pass two zero words or pass
zero for the second button if only one button is needed. The buttons are placed
in the lower left and right portion of the dialog box. The predefined buttons are:
PDB_OK, PDB_SAVE, PDB_YES, PDB_CANCEL, PDB_NO, and PDB_GOTO.

11.4.2.5. HEDIT char * TextPtr, WORD Dlen

HEDIT fields do not use the FieldBuf array passed to the Dialog function so they
do not need the bOffset and FLen fields like normal edit fields. The call-back
routine is called with the first parameter equal to DB_ GET_EDIT_HANDLE and
the second parameter equal to the field’s index value. The call-back routine
should then return the handle of an edit buffer of at least DLen bytes long.

11.4.2.6. HPOPUP char * TextPtr, HANDLE hPopup, WORD olndex

HPOPUPs work like POPUPs in a dialog box but instead of being passed a
pointer to a MENU structure (which defines the POPUP), the handle to a
dynamically created POPUP is passed to DialogAdd . This handle does not have
to be locked since the dialog code will lock and unlock the handle as needed. As
stated earlier, HPOPUPs cannot be used in the resource compiler.

11.4.2.7. MENU MENU * menuPtr, WORD MaxMenuWidth

A MENU field defines a menu for a dialog box. Each dialog box can have at most
one menu. A menu field is defined by a pointer to a MENU structure created
statically with the resource compiler or dynamically (in which case the caller must
insure the structure remains locked while in-use in the dialog box). The menu is
drawn at the x, y coordinates specified using MenuBegin . When a menu key is
pressed, the call-back is passed to the MENU's field index along with a DWORD
value containing the menu-handle returned from MenuBegin in the high word
and the key code in the low word. The call-back may return DB_EXIT to close the
dialog box or a value greater than or equal to zero. This value is the field index of
the item that will now be the top-most item in the dialog box. This scheme allows
for multipage dialog boxes like the MODE screen on the calculator, see example

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 11: Creating the User Interface 111

11.4.2.8.

11.4.2.9.

below. The numbers 0, 8, 16 represent the field indexes of the mode screen’s
dialog box.

BOOL ModeCallBack(WORD digld, DWORD dValue)

I/ Menu key press
if (digld == 20) {

WORD fkey = LO_ WORD(dValue);

return fkey == KB_F1 ? 0 : fkey ==KB_F2 ? 8 : fkey ==KB_F3? 16 : -1;
}

POPUP char * TextPtr, MENU * Popup, WORD Optionindex

A POPUP field defines a pop-up menu. The field is defined by a pointer to an
optional zero-terminated string used to label the pop-up, a pointer to a pop-up
MENU structure (as created by the resource compiler, for dynamic pop-ups use
HPOPUP), and the index (Optionindex) into the OptionList passed to Dialog .

Note: OptionList is a C structure, so indexes to it (like Optionindex) are zero based. See the
Dialog function entry point for an example.

The value stored in OptionList for this field is the value stored in the pop-up menu
structure as the identifier for the currently selected menu item. Default identifiers
for menus start from 1 and go up to the number of menu items in the menu. The
user may redefine these identifiers if needed. The call-back is called each time
the pop-up is modified. See section 11.4.4. Dialog Call-Backs for a description
of the events involved.

SCROLL_REGION WORD x1, WORD y1, WORD Index0, WORD Index1,
WORD NumbDspFields, WORD TotNumpFields,
WORD FieldHeight

A scroll region defines a group of similar fields that will scroll as the user moves
through the fields. The region (using dialog box coordinates) of the dialog box
that scrolls is defined by the x and y parameters defined for all dialog fields to
specify the upper left coordinate of the scroll region along with an x1 and y1 field
to specify the lower right coordinate of the scroll region. The field index of the first
field that will scroll (/ndex0) followed by the index of the last field that is scrollable
(Index1) are specified next. These values are followed by the number of fields
that are displayed at one time (NumDspFields), the total number of scrollable
fields (TotNumFields), and finally the height in pixels of each field (FieldHeight).
All of the fields that are scrollable must be defined contiguously and have the
DF_SCROLLABLE bit set in their flag byte. The coordinates of the scrollable
fields are relative to the dialog box except that they may extend beyond the

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

112 Chapter 11: Creating the User Interface

bottom coordinate of the dialog box. They are defined assuming a virtual scroll
region.

Note: If you use SCROLL_REGION, it must be the first item defined in the dialog box.

11.4.2.10. TEXT char * TextPtr

A TEXT field is a static field that allows for stand-alone text to be placed
anywhere in a dialog box. The field is defined by a zero-terminated string.

If the DF_OWNER_DRAW flag is set, then the call-back is passed the field index
and a pointer to a OWNER_DRAW_STRUCT structure. The first item of this
structure is a direct pointer to the DIALOG_ITEMS structure for the field to be
drawn (this is not normally used). The second item is a pointer to the WINDOW
structure for the dialog box. Using this pointer, the call-back can draw anything
and anywhere to the dialog box (all clipped to the dialog boxes window). This
may include both text and images.
typedef struct {

DIALOG_ITEMS *Item;

WINDOW *pW;
} OWNER_DRAW_STRUCT;

An example from the VAR-LINK code’s receive variable overwrite dialog box is
listed below.

/* VAR-LINK RECEIVE: Overwrite callback */
WORD VL_OverwriteCB(WORD Dlgld, DWORD dValue)

if (DIgld == 0) {
WinStrXY(((OWNER_DRAW_STRUCT *) dValue)->pW, 8, 15, (char *)
VL_VarName);
return TRUE;
}
if (Dlgld == DB_QACTIVE && dValue == 2)
return (VL_OverwriteAns[0] == VLO_NO);
if (DIgld == 1)
return DB_REDRAW_AND_CONTINUE;
return TRUE;

11.4.2.11. XFLAGS WORD xFlags1, xFlags2, xFlags3, xFlags4

The XFLAGS field defines an array of four extended WORD flags. Currently only
the first WORD is used and may contain the following flags. The remaining three
WORDSs should always be set to zero for future compatibility.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 11: Creating the User Interface 113

XF_ALLOW_VARLINK

Setting this extended flag allows all edit fields in the dialog box to allow the
[VAR-LINK] key to be activated within the dialog box and to paste results to the
edit field. If this flag or XF_VARLINK_SELECT_ONLY is not set, then when
[VAR-LINK] is pressed in a dialog box, the dialog box will be closed and VAR-LINK
will be activated.

XF_NO_ALPHA_LOCK

On the TI-89, Alpha-Lock is turned on for all dialog boxes with edit fields. Setting
this extended flag disables this feature.

XF_VARLINK_SELECT_ONLY

This flag is similar to XF_ALLOW_VARLINK except that the user may not make
any variable changes inside VAR-LINK (like deleting, copying, renaming, or
locking variables).

11.4.3. Dialog Flags

Each dialog field has a flag byte that provides additional features explained in the

table below.
Flag Useable with these fields
DF_TAB_ELLIPSES EDIT, POPUP — Draw ‘. . ." between label and

pop-up/edit box.

DF_MAX_MENU_WIDTH MENU — Pass MBF_MAX_MENU_WIDTH to
MenuBegin instead of zero.

DF_SCROLLABLE Any field — Used to denote scrollable fields in
SCROLL_REGION.

DF_CLR_ON_REDRAW SCROLL_REGION — Clear the entire visible scroll
region when redrawn.

DF _TAB_SPACES EDIT, POPUP — Draw spaces between label and
pop-up/edit box.

DF_OWNER_DRAW TEXT — Call-back is responsible for drawing this field
(which may be text or an image).

DF_POPUP_RADIO POPUP — Pop-ups act like the TI-83 radio buttons.

DF_SCREEN_SAVE Any field (if first field) — The dialog code saves the

area underneath the dialog box when it is started,
DB_MEMFUL returned if it cannot.

DF_SKIP Any field — This field is skipped since the system
maintains this flag.

Table 11.2: Dialog Flags and Corresponding Fields

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

114 Chapter 11: Creating the User Interface

11.4.4. Dialog Call-Backs

The dialog code and the application can communicate changes to the status of a
dialog box as the dialog box is changed by the user. This is done through the
call-back function which is defined when the dialog box is created (either
statically or dynamically). Even if no call-back is needed, a routine MUST be
provided (the same do-nothing call-back can be provided for multiple dialogs). An
example of a do-nothing call-back is shown below.

DWORD NocCallBack(WORD Dlgld, DWORD dValue) {
return TRUE;

}

If the user provides a call-back function then it is called under the following
cases. The call-back is passed with two parameters: Digld (WORD) and dValue
(DWORD). If DIgld is equal to DB_QACTIVE then the dialog code needs to know
if the field whose field index is in dValue is active. Indexes range from O for the
first item in the dialog box up to the number of fields in the dialog box less one.
The call-back should return TRUE if it is active (not grayed-out) or FALSE if it is
inactive (grayed-out). Inactive static fields (HEADER and TEXT) are not drawn
instead of being grayed-out.

If DIgld is in the range zero through the number of fields in the dialog box less
one, then it is the field index of a dialog item that has just been changed by the
user. The application can take any necessary action (including adjusting values
changed by the user). It must return one of the following values.

DB_REDRAW Redraw the dialog box and ignore the key just
pressed by the user.

DB_REDRAW_AND_CONTINUE | Redraw the dialog box and accept the key just
pressed by the user.

TRUE Do not redraw the dialog box and accept the key
just pressed by the user.

Table 11.3: Call Back Function Return Values

dValue will vary depending on the type of the field changed:

POPUP — The value from the pop-up selected by the user (the identifier for the
pOp-up).
MENU — The low WORD contains the key pressed by the user to activate the menu.

The high WORD contains the handle of the menu (the dialog box code
calls MenuBegin initially on the menu field). The call-back may activate
the menu if needed. See section 11.4.2.7. MENU for more details.

EDIT — Address pointing to the data the user just entered.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 11: Creating the User Interface 115

Dlgld can also have other special values. If it is DB_GET_TITLE, then dValue will
be zero and the call-back must return the text for the header of the dialog box.
This is only used if the static dialog box used the DYNHEADER field. If Digld is
DB_GET_EDIT_HANDLE then dValue will be the field index of an HEDIT field.
See section 11.4.2.5. HEDIT for more detalils.

11.5. Resource Compiler

The resource compiler (rc2.exe) is used to create dialog boxes, menus, and
pop-ups. Normally, the TI FLASH Studio™ (IDE) will call the Resource Compiler.
The resource compiler translates resource descriptions into internal structures
usable by the AMS. To call the Resource Compiler manually, the following syntax
is used.

rc2 [-mp] resource-file

The optional switch m forces all common strings within menus to be merged
together, if possible, in order to save space. Due to the compacted nature of a
menu, some strings cannot be merged. The optional switch p calls the C
preprocessor (using com68.exe) on the resource file first. This allows a resource
file to contain any C preprocessor commands (such as #define, #include,

#ifdef, . . .).

The resource compiler translates the resource file into an assembly language file
that defines the individual MENU or DIALOG box structures (POPUPs are
special cases of MENUS). The resource file is a standard text file (blanks, tabs,
and new-lines are skipped). A semicolon in the first column of a line denotes a
comment. Each structure is denoted by a keyword: DIALOG, TOOLBOX or
POPUP. The keyword is followed by additional fields as defined below.

Text fields in dialog boxes and menus are specified as either strings of text
delimited by double quotation marks or resource string numbers. If resource
string numbers are used, the app is responsible for supplying the text definitions
in its application frame.

Menus and pop-ups can also have ICONs or BITMAPS in place of text strings.
Icons and bitmaps can be defined in-line or in an icon/bitmap file. Icons are
defined in-line with a single left bracket followed by 16 unsigned short values
(0. ..OxFFFF) and a terminating right bracket. The hex values use the C syntax
of numbers so OXABCD is the same as the decimal number 43981. Bitmaps are
defined in-line with double left brackets followed by the number of rows in the
bitmap, the number of columns, the data as a sequence of hex bytes

(0. .. OxFF), and finally double right brackets.

Icons and bitmaps can also be defined in an icon/bitmap file and referenced
indirectly in the resource file. The icon/bitmap file is a standard text file with the
icons and bitmaps defined as specified in the preceding paragraph. Each icon or

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

116

Chapter 11: Creating the User Interface

bitmap is followed by a comma and a unique identifying name. The icon or
bitmap is referenced in the resource file by using a * character followed by the
icon/bitmap filename, a comma, and then the identifying name specified in the
icon/bitmap file. The following example creates a menu using both an icon and
several bitmaps from the file appr2.ico which follows. This example also creates
a pop-up using an embedded icon and an embedded bitmap as shown in
Figure 11.2.

TOOLBOX TestMenu, 0, 0, 0{

"Text"{
*appr2.ico, ICON_1,1D_2
*appr2.ico, BITMAP_1,1D_3
}
*appr2.ico, BITMAP_2,1D_4
*appr2.ico, BITMAP_3,ID_5

}

POPUP TestPopup, 0, 0 {

[0x0000, OXFFFE, 0x2FF9, 0xOBF9, 0x02F9, 0x00B9, 0x1029, 0x3006,
0x6000, 0x6000, OxFFFF, OxFFFF, 0x6000, 0x6000, 0xF000,
0x0000], ID_P1

[[12, 14, Ox7F, OXFC, 0x40, 0x04, Ox4F, 0xC4, 0x40, 0x44, 0x40,
0x44, Ox4F, 0xC4, 0x48, 0x04, 0x48, 0x04, 0x48, 0x04, 0x4F, 0xC4,
0x40, 0x04, 0x7F, OxFC]], ID_P2

}

/I APPR2.1CO
[0x0000, OXFFFE, 0x2FF9, 0XOBF9, 0x02F9, 0x00B9, 0x1029, 0x3006, 0x6000,

0x6000, OXFFFF, OXFFFF, 0x6000, 0x6000, 0XFO00, 0x0000], ICON_1
[[12, 14, OX7F, OXFC, 0x40, 0x04, 0x4F, 0xC4, 0x40, 0x44, 0x40, 0x44,

OX4F, 0XC4, 0x48, 0x04, 0x48, 0x04, 0x48, 0x04, Ox4F, 0xC4, 0x40,

0x04, OX7F, OXFC]], BITMAP_1
[[15, 11, 0x00, 0x00, 0X08, 0X00, 0XOC, 0X00, OXOE, 0x00, OXOF, 0X00,

OXOF, 0x80, OXOF, 0xCO, OXOF, OXEO, OXOF, 0x00, OXOF, 0x80, 00D,

0x80, 0x08, 0xCO, 0x00, 0XCO, 0x00, 0x60, 0x00, 0X60]], BITMAP_2
[[12, 12, 0x00, 0X00, 000, 0x00, 000, 0X00, 000, 0x00, 000, 010,

0x00, 0x30, 0x00, 0x60, 0x00, 0xCO, Ox11, 0x80, 0x1B, 0x00, OXOE,

0x00, 0x04, 0x00]], BITMAP_3

Note that BITMAPSs in menus are limited to a maximum of 16 rows and the
columns are limited to the width of a menu item. The main reason for using
BITMAPSs in a menu is in the top-level toolbar. By using BITMAPs, the menu
system can reduce the total width of the top-level toolbar as shown in the
following image from the preceding example. Since the menu items associated
with F2 and F3 are bitmaps, the width of the corresponding tabs is not as wide as
if they had been defined as ICONs which are always assumed to be 16 by 16 in
a menu.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 11: Creating the User Interface 117

|FhIM

— —
KAD AUTO FUNC

Figure 11.2: Screen Shot from Test

Menu Example

11.5.1. DIALOG Boxes

DIALOG DialogName, DialogWidth, DialogHeight, CallBackRoutine {

}

DYNPOPUP {Flags, x, y}, Text, GetDynPopupRoutine, OptionListindex
DYNHEADER {Flags, x, y}, PDB1, PDB2

EDIT {Flags, x, y}, Text, BufferOffset, FieldLength, DisplayLength
HEADER {Flags, x, y}, Text, PDB1, PDB2

HEDIT {Flags, x, y},Text, 0, O, DisplayLength

MENU {Flags, x, y}, MenuName

POPUP {Flags, x, y}, Text, PopupName, OptionListindex

SCROLL_REGION {Flags, x, y}, x1, y1, Index0, Index1, NumDspFields,
TotNumfFields, FieldHeight

TEXT {Flags, x, vy}, Text
XFLAGS {Flags, x, y}, FlagVall, FlagVal2, FlagVal3, FlagVal4

DialogName is the name given to the dialog box structure. The generated .h file
is included to reference the dialog box from a C program. DialogWidth and
DialogHeight define the width and height of the dialog box in pixels. If either or
both is zero, then the system will set them to the maximum values used by the
dialog box at the time the dialog box is executed. CallBackRoutine is the name of
the call-back function used for the dialog box. See section 11.4.4. Dialog
Call-Backs for a description of call-backs.

Each item within the dialog structure has a Flags byte and an (x, y) coordinate of
the upper left pixel of the field. All coordinates in a dialog box are relative to the
upper left corner of the dialog box.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

118 Chapter 11: Creating the User Interface

See section 11.4.2. Dialog Fields for a description of the individual fields and
their parameters. There are a few differences in defining a dialog box with the
resource compiler as noted in the following paragraphs.

DYNHEADER does not have a field for the text of the header. Instead, the
call-back is called with the Digld parameter set to DB_GET_TITLE. The call-back
routine must return a pointer to the text to use for the titte. DYNHEADERS are
only available in the resource compiler and cannot be added to dynamic menus
with the DialogAdd function.

HEDIT entries do not use the BufferOffset or FieldLength fields and so these
should be set to zero (DisplayLength must still be provided).

MENU (TOOLBOX can be used also) and POPUP require the name of a menu
or pop-up that is defined elsewhere in the resource file.

11.5.2. MENUSs

MENU MenuName, Flags, MaxHeight, MaxWidth {
Textl, TOP_LEVEL ID1
Text2 {
Text3, SUB_LEVEL 1 ID3
Text4, SUB_LEVEL_1_1D4
Text5 {
Text6, SUB_LEVEL_2_ID6
Text7 {
Text8, SUB_LEVEL_3_ID8
Text9, SUB_LEVEL_3_ID9
}
}

}
Text10, TOP_LEVEL_ID10 {

}
*|conBitmapFile, IconOrBitmapName, TOP_LEVEL_ID11

[HexValuel, . . ., HexValuel6], TOP_LEVEL_ID12
[[NumRows, NumCaols, BitmapData, ...]], TOP_LEVEL_ID13

}
MENU and TOOLBOX are synonymous. MENUs may have up to three levels of
nesting (the top-level being the first level). Each successive level is enclosed in
braces. Like dialog boxes, IDs are assigned sequential values (starting from one)
by default. The names are stored in a header file (same base-name as the
resource file with an extension of .h). The default numbers may be changed by

following a name with an equals sign and then a number specifying the modified
ID value.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 11: Creating the User Interface 119

As with dialog boxes, MenuName is the name used to refer to the menu both in
the resource file and inside a C program. Flags is usually zero for a menu. If
Flags is equal to RC_NO_IDS then the menu IDs are not symbolic values stored
in the menu’s header file but instead are absolute numbers that will be used as
IDs for each menu item. If MaxWidth (in pixels) is set to zero then MenuBegin
will draw the menu only as wide as necessary. MaxHeight should be setto 0
which will use the default height.

A menu item that includes other menu items is called a parent (the entry Text2 {
above). Parent menu items do not normally have IDs associated with them since
they cannot be selected by the user and so do not return an ID value. However,
they may need an ID for two reasons. The first is if the menu is to be loaded
using MenuLoad and then later modified; since an ID is needed to modify an
entry. The second reason is if the menu item is to be disabled or checked. The
entry Textl, TOP_LEVEL_ID1 is not a parent since it is a stand-alone entry. It can
be selected by pressing the menu key associated with that entry ([F1] in this
case). The entry Text10, TOP_LEVEL_ID10{ is a special case. It is a parent
(cannot be selected) that has no children. This is only used for menus loaded
with the MenuLoad function. This entry can then later have other menu entries
(children) added to it. See the MenuLoad function for an example.

11.5.3. POPUPs

POPUP PopupName, Flags, MaxHeight, Title {
...same formatasamenu. ..

}

POPUPs are defined almost identically to MENUSs. The differences are that
POPUPs may have an optional title (a text string delimited by double quotes or
an icon) as well as a Flags value of MF_NO_NUMS (32) which signifies that the
individual items in the pop-up are not to be numbered. If MaxHeight is set to zero
then the MenuPopup routine will try to fit as much of the pop-up on the screen
as it can. This value may be overridden as long as the size of any title is taken
into account.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

120

Chapter 11: Creating the User Interface

11.6.

Example

This section will discuss the following example in detail. It has all of the
components described in this chapter: windows, menus (toolbars and pop-ups),
and dialog boxes. It uses the resource compiler for a static menu and dialog box,
and creates a dynamic pop-up.

OCoOoO~NOUITR_WNEF

/I APP1.C

#include "tiams.h"
#include "appl1.h"
#include "apprl.h"

static void AP_app(pFrame self, PEvent e);

FRAME(appObj, OO_SYSTEM_FRAME, 0, OO_APP_FLAGS, 4)
ATTR(OO_APP_FLAGS, APP_INTERACTIVE)
ATTR(OO_APP_NAME, "app1")
ATTR(OO_APP_PROCESS_EVENT, &AP_app)
ATTR(OO_APP_DEFAULT_MENU, &AppMenu)

ENDFRAME

pFrame pAppObj = (pFrame)&appObj; /* Must be 1st! */
WINDOW appW;
char buf[22];

static void AP_app(pFrame self, PEvent e) {
Access_AMS_Global_Variables;
WIN_RECT appWR;
HANDLE hPopup;
short key, vSelect; WORD opts[3];
char outStr[256];

switch (e->command) {
case CM_START:
appWR = *(e->info.startInfo.startRect);
if (WinOpen(&appW, &appWR, WF_TTY | WF_DUP_SCR))
WinClr(&appW);
else
EV_quit();
strepy(buf, "FIRST");
strepy(buf+11, "SECOND");
break;
case CM_ACTIVATE:
EV_defaultHandler(e);
EV_disableCmd(ACM_NOTHING);
WinBeginPaint(&appW);
WinActivate(&appW);
WinStr(&appW, "Just activated\n");
break;
case CM_DEACTIVATE:
WinEndPaint(&appW);
break;
case CM_QUIT:
if (appW.Next) {
WinClose(&appW);
appW.Next = NULL;

TI-89 / TI-92 Plus Developer Guide Not for Distribution

Beta Version January 26, 2001

Chapter 11: Creating the User Interface

121

}

break;
case CM_KEY_PRESS:
key = e->info.keyInfo.keyCode;
if (key <= OXFF && isprint(key)) || KB_ENTER == key) {
WinChar(&appW, key);
} else
EV_defaultHandler(e);
break;
case CM_WPAINT:
DrawWinBorder(&appW, &appW.Window);
WinBackupToScr(&appW);
break;
case ACM_WINSTR:
WinStr(&appW, "APP1 CMD1\n");
break;
case ACM_DIALOG:
opts[0] = opts[1] = 1; /* default to 1st pop-up item */
if (KB_ENTER == Dialog(&tDialog, -1, -1, buf, opts)) {
sprintf(outStr, "Edit1: %s\nEdit 2: %s\nPopupl: %ed\nPopup2: %od",
buf, buf+11, opts[0], opts[1]);
DIgNotice("tDialog", outStr);
}
break;
case ACM_POPUP:
if (hPopup = PopupNew("DYNAMIC POPUP", 0)) {
DynMenuAdd(hPopup, 0, buf, 1, DMF_TEXT | DMF_TOP);
DynMenuAdd(hPopup, 0, buf+11, 2, DMF_TEXT | DMF_TOP);
DynMenuAdd(hPopup, 0, "LAST ITEM", 3, DMF_TEXT | DMF_TOP);
if ({(MenuFlags(hPopup) & MF_ERROR)) {
vSelect = PopupDo(hPopup, -1, -1, 0);
sprintf(outStr, "Selected %s", PopupText(hPopup, vSelect));
DlgNotice("dPopup", outStr);
}
HeapFree(hPopup);
}
break;
case ACM_HFONT:
WinFont(&appW, F_8x10);
break;
default:
EV_defaultHandler(e);
break;

}

DWORD NocCallBack(WORD Digld, DWORD Value) { return TRUE; }

/l APP1.H

#define ACM_WINSTR 0x500
#define ACM_DIALOG 0x501
#define ACM_POPUP 0x502
#define ACM_NOTHING 0x503
#define ACM_HFONT 0x504
/I APPR1.R

#include "appl1.h"
#include "tiams.h"

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

122 Chapter 11: Creating the User Interface

107
108 TOOLBOX AppMenu, RC_NO_IDS, 0, 240 {
109 "Actions" {

110 "WinStr', ACM_WINSTR

111 "Dialog", ACM_DIALOG

112 "Popup”, ACM_POPUP

113 "Grayed-out”, ACM_NOTHING

114 }

115 "HFONT", ACM_HFONT

116

117

118 DIALOG tDialog, 180, 70, NoCallBack {

119 EDIT, {DF_TAB_SPACES, 12, 14}, "EDIT1", 0, 10, 11

120 EDIT, {DF_TAB_SPACES, 12, 24}, "EDIT2", 11, 10, 11

121 POPUP, {DF _TAB_ELLIPSES, 12, 34}, "FIRST POPUP", Popup1, 0
122 POPUP, {DF_TAB_ELLIPSES, 12, 44}, "2ND POPUP", Popup2, 1
123 HEADER, {0, 0, 0}, "DIALOG HEADER", PDB_OK, PDB_CANCEL
124

125

126 POPUP Popupl, RC_NO_IDS, 0{

127 "ltem 1-1", 1

128 "ltem 1-2", 2

129

130 POPUP Popup2, RC_NO_IDS, 0{

131 “ltem 2-1", 1

132 “ltem 2-2", 2

133 “ltem 2-3", 3

134

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 11: Creating the User Interface 123

11.6.1. Files in Example and Explanation of Details

appl.c |The C source file.

appl.h | The header file contains definitions used by appl.c and apprl.r.

apprl.r | The resource file contains the menus, dialogs, and pop-ups.

Lines2...4

Lines6...12

Line 14

Lines 15, 16

Line 18

Line 19

Lines20...23
Lines26...34

Line 35

Line 36

Line 37

Line 38

Line 39

Specifies the standard header tiams.h, our header file
appl.h, and the resource file apprl.h (generated by the
resource compiler).

All apps must have a frame that defines the interface
between it and the system. This app’s menu is handled by the
system because of line 11 (OO_APP_DEFAULT_MENU).
See chapter 7. Flash Application Layout for more details.

The first data item must be a pFrame to the apps FRAME.
The apps static global data.

Every interactive app must have an event handler. See
chapter 9. Application Control Flow for a complete
description of system events.

Required if a function accesses any data in the AMS (the
isprint macro accesses the global CTypeTable).

The event handler’s local data.

When this app is started it finds the size of its current
window from the start-up message; opens a window using
WinOpen (note that the size and position of the window in
the start-up message assumes the app has a menu); and
then initializes any of its global data.

The app is activated after it receives the start message and
whenever it is switched to in split screen mode.

Since we are letting the system handle our menu this call to
EV_defaultHandler turns our menu on.

Now that our menu is on we can disable/enable or
check/uncheck any items, in this case the item with ID
ACM_NOTHING is disabled.

WinBeginPaint saves the current system draw status
(current font, attribute, clipping, . . .) since another app may
have switched states.

Activates our app’s window (the system puts our window at
the topmost position of all windows) and highlights our
window border (if present).

TI-89 / TI-92 Plus Developer Guide

Not for Distribution Beta Version January 26, 2001

124

Chapter 11: Creating the User Interface

Lines 42, 43

Lines 45 . ..

Lines 51 ..

Lines58. ..

Lines 62 . ..

Lines 65 . ..

Lines68. ..

Lines 73 . ..

50

. 57

61

64

67

70

77

When another app is switched to in split screen mode or our
app is about to be closed a deactivate message is sent and
we restore the saved screen state.

The quit message signals our app is about to be closed. We
close our window if it was opened (all opened windows must
eventually be closed) and mark it as closed.

Echo printable characters to our window, let the system
respond to any other keys (if we did not the system would
not work).

We receive a paint message when the system wants us to
redraw our window. The WF_DUP_SCR in our call to
WinOpen tells the system to make a backup of all of our
writes to our window (at the cost of extra memory and time)
and so all we have to do is redraw our border and call
WinBackupToScr to copy the duplicate screen image to the
display.

ACM_WINSTR is a menu ID defined in appl.h (line 98) and
stored in our menu (line 110). Application menu IDs range
from 0x500 . . . Ox6FF and are used to return values to an
app. Since it is stored in our menu and the system is
handling our menu we get the command automatically when
the user selects it from our menu. In this case we just draw
a string to our window.

ACM_DIALOG (lines 99, 111), another of our menu IDs is
sent when it is selected from our menu to call our dialog
(defined on lines 118 . . . 134). We then setup the
parameters for our dialog. The edit field parameters were
set on lines 32 and 33 in response to our start-up message
and so their values will only change when the app is started.
The array opts contains the values passed to and returned
for the two dropdowns (lines 121, 122 and lines

126 ... 134) in the dialog box.

If is pressed to close the dialog box ([ESC] is the other
valid key) we display the values selected using DigNotice .
DigNotice creates a dynamic dialog box and places the
strings we pass along with [ENTER] and (ESC] buttons.

Here we create a dynamic pop-up using the values entered
in the dialog box and one additional static item. Instead of
using predefined menu IDs we pass O (the second
parameter to DynMenuAdd) so that they are assigned
sequentially (starting with 1).

TI-89 / TI-92 Plus Developer Guide

Not for Distribution Beta Version January 26, 2001

Chapter 11: Creating the User Interface 125

Lines78...82
Lines 83

Lines 86 .. .88
Lines89...91
Line 95

Lines 97 ...102
Lines 104 ... 106

Lines 108 ...116

Line 118

Lines 119, 120

Lines 121, 122

Lines 126 ...134

If there were no errors adding the dynamic elements to the
pop-up (memory full), we execute the pop-up and display
the results as with the dialog box.

The memory for this pop-up was created dynamically so it
must be freed when we are done with it.

One additional menu item lets the user change the font for
our window.

Any messages we do not handle must be passed onto the
system so they get handled by someone.

All dialog boxes must have a call-back function.
Our predefined menu IDs used by both appl.c and apprl.r.

Our resource file, it includes our predefined menu IDs and
the standard include file tiams.h also.

TOOLBOX defines a menu. The RC_NO_IDS flag says we
will assign all menu IDs. A O tells the resource compiler to
use the names we give as symbolic menu IDs and assign
them sequential values.

We define a 180 by 70 pixel dialog box with a call-back
function named NoCallBack (defined on line 95).

There are two text edit fields each 10 characters in length
with space for 11 characters displayed (the extra space
means the edit field will not scroll when the last character is
hit). The first edit field will start at offset O of the buffer we
pass to the Dialog function and the next edit field will start
at offset 11 (must leave room for the zero byte terminator).
Each edit field starts 12 pixels from the left edge of the
dialog box and the first edit field starts 14 pixels from the
top while the second edit field starts 24 pixels down.

There are two pop-ups with coordinates spaced the same as
the edit fields (12 pixels from the left edge and 10 pixels
apart).

The pop-ups for the dialog box are defined here (they can
also be used separately as static pop-ups).

This example can be built using the TI FLASH Studio™.

TI-89 / TI-92 Plus Developer Guide

Not for Distribution Beta Version January 26, 2001

126 Chapter 11: Creating the User Interface

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

127

12. Basic Text Editing Facility

The basic text editing facility simplifies the entry and editing of text. The text
editor supports cursor blink, text entry, and cut, copy, and paste through the
clipboard.

12.1. How to Edit Text

Begin by creating a text edit record and attaching it to a window. The text edit
record keeps track of the edit buffer contents, cursor location, selected text, and
other details of presenting the text in a window. Routines TE_open and
TE_openFixed initialize a text edit record and attach it to a window.

The edit buffer can be variable- or fixed-length. Use routine TE_open to create a
variable-length edit buffer. The text editor maintains a handle to the edit buffer
and expands or contracts the buffer automatically as text is added or deleted.
The edit buffer always contains at least one byte for the null end-of-string
terminator.

Use routine TE_openFixed to initialize a text edit record with a fixed-length edit
buffer. Unlike TE_open, this routine cannot allocate a buffer if the app does not
provide one. TE_openFixed must be given a pointer to a buffer big enough to
contain the longest expected data plus room for one null end-of-string terminator.

The text editor handles keypresses through the TE_handleEvent routine. Pass
to TE_handleEvent an event received by the app from the OS. The text editor
processes the event and takes care of inserting or deleting text, highlighting
selected text, cut, copy, paste, repainting, and cursor blink messages.
TE_handleEvent returns TRUE if it handled the event. The application should
pass the event to EV_defaultHandler if the text editor returns FALSE.

To do anything useful with the edited text, the application should look at
CM_KEY_PRESS events before calling TE_handleEvent . The application
should respond to keys such as to terminate the edit and act on the
contents of the edit buffer.

Routine TE_shrinkWrap releases slack memory in a variable-length edit buffer,
cancels selection highlight, turns off the cursor, and returns a handle to the edit
text. The edit buffer memory is not freed. Use this routine to prepare the edit
buffer for further processing in the app or to be stored as a variable.

Call TE_reopen to reopen a text edit record which has been closed by
TE_shrinkWrap . This routine selects and highlights all the text in the edit buffer.

Call TE_close to close out a text edit record and release its memory.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

128 Chapter 12: Basic Text Editing Facility

12.2. Simple Text Edit Example

This simple application displays a single menu on the menu bar with choices for
cut, copy, and paste. It responds to typing and cursor arrow keys.

File teappr.r:

#include "tiams.h"

TOOLBOX teappMenu, RC_NO_IDS, 0, 160 {

XR_Tools {
XR_CutO, CM_CUT
XR_CopyO, CM_COPY
XR_PasteO, CM_PASTE
}
}
File teapp.c:

#include "tiams.h"
#include "teappr.h"

void main(pFrame, Event *);

FRAME(teappFrame, OO_SYSTEM_FRAME, 0, 00O_APP_FLAGS, 4)
ATTR(OO_APP_FLAGS, APP_INTERACTIVE)
ATTR(OO_APP_NAME, "Text Edit Demo")
ATTR(OO_APP_PROCESS_EVENT, &main)
ATTR(OO_APP_DEFAULT MENU, &teappMenu)

ENDFRAME

pFrame TeappFrame = (pFrame)&teappFrame;

WINDOW myWindow;
TERecord myTE;

void main(pFrame self, Event *event)

{
WIN_RECT teRect;

HANDLE hText;

switch (event->command)
{
case CM_START:
WinOpen(&myWindow, event->info.startinfo.startRect, 0);
DrawWinBorder(&myWindow, &myWindow.Window);
WinClr(&myWindow);

/* Create an empty text edit field.

The text field occupies one line at the top of the window.
Text will scroll within the edit field if it is too long to
be displayed. Arrows appear at either end to indicate some
text has scrolled out of the edit field.

*/

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 12: Basic Text Editing Facility 129

teRect.x0 = 0;

teRect.y0 = 2;

teRect.x1 = WinWidth(&myWindow);
teRect.yl = teRect.y0 + LF_HEIGHT - 1;

TE_open(&myTE, &myWindow, &teRect, H_NULL,
0, 0, TE_NOWRAP|TE_MORE_ARROWS);
break;

case CM_QUIT:
[* Get text from edit record */
hText = TE_shrinkWrap(&myTE);

/* Do something with text
*/ '

/* Close text edit record */
TE_close(&myTE);

WinClose(&myWindow);
break;

case CM_ACTIVATE:
DrawWinBorder(&myWindow, &myWindow.Window);
EV_defaultHandler(event);
break;

default:

/* Allow the text editor the first attempt at handling the
event. If it does not know how to handle the event, then
pass it on to the OS default event handler.

*/

if (! TE_handleEvent(&myTE, event))
EV_defaultHandler(event);

12.3. Clipboard

The text editor moves text between the clipboard and edit buffer in response to
commands CM_CUT, CM_COPY, and CM_PASTE.

An application can manipulate the clipboard directly using routines
CB_replaceTEXT and CB_fetchTEXT . Any text placed in the clipboard by an
app with a call to CB_replaceTEXT can later be pasted into a text edit field.
Likewise, text placed in the clipboard by the text editor can be retrieved by the
app with a call to CB_fetchTEXT .

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

130 Chapter 12: Basic Text Editing Facility

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

131

13. Memory Management

13.1. The Heap (Dynamic RAM Storage)

The heap is the place where all dynamic data is stored. The heap is organized
around the use of handles. A handle is a WORD (unsigned 16 bit quantity) that
references a block of heap memory. Handles are used so that the heap blocks
can be compressed by garbage collection when the heap becomes fragmented.
In order to use a handle it must first be dereferenced. The dereferenced handle
points to the data in the heap. This pointer is valid as long as nothing is done that
could cause the heap to be compressed. The following routines may cause the
heap to be compressed (the caller must also be aware of other system routines
that call these routines): HeapAlloc , HeapAllocThrow, HeapAllocHigh
HeapAllocHighThrow, HeapCompress , HeapMax, HeapMoveHigh ,
HeapRealloc , and HeapShuffle . After any of these routines are called (either
directly or indirectly), any dereferenced handles must be dereferenced again;
otherwise, the data pointed to by the dereferenced handle may have been
moved. Most estack routines may cause heap compression. If necessary, a heap
block can be locked. Once locked, a heap block will not be moved. This should
only be done when necessary since it causes garbage collection to be inefficient,
creating the possibility that insufficient RAM will be available when needed. Heap
allocation routines accept a DWORD (double-word) length value but the AMS
implementation limits heap allocations to 65,532 bytes.

For an application, all of its data is either stored in the heap (directly or using
routines like the file system) or in the applications static data area. Data placed in
the heap remains even after an app is terminated. All handles returned from
calling any of the heap allocation routines must be freed before an app is
terminated. Files and variables do not have to be deleted but remain until deleted
by the app, deleted by the user or the system is reset.

HeapAlloc, HeapAllocThrow, @ — Allocate memory from the heap.
HeapAllocHigh,
HeapAllocHighThrow

HeapAuvail — Return the total amount of free bytes in the heap.

HeapCompress — Coalesce all used heap blocks, deleting any free
blocks from the heap if possible (garbage
collection).

HeapDeref — Dereference a handle, returning a pointer to the
data.

HeapFree — Free a heap block given its handle.

HeapFreelndir — Free a heap block given the address of a handle.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

132 Chapter 13: Memory Management

HeapGetLock — Return TRUE if a block is locked, otherwise return
FALSE.
HeapLock — Lock the block referenced by the given handle so

that it is NOT moved during garbage collection.

HeapMax — Return the maximum block allowable in the heap
(does garbage collection).

HeapMoveHigh — Try to reallocate a block as high in memory as
possible.

HeapPtrToHandle — Find the handle to a given pointer.

HeapRealloc — Reallocate the size of a heap block (smaller or
larger).

HeapShuffle — Move blocks of memory around (for debugging).

HeapSize — Return the number of bytes allocated for the given
heap block.

HeapUnlock — Unlock the block referenced by the given handle so

that it can be moved during garbage collection.

HLock — Lock and dereference a handle.

13.2. File System

The File routines provide a convenient way to store application data. Each active
file must have an associated FILES structure. Files are stored in the symbol table
(see section 13.3 Managing Variables) and as such have a semipermanent life.

Filenames used as parameters are not tokenized variable names as required by
the symbol table code, but are a string of characters. They must not be reserved
names. If a filename does not have a folder name then it will be stored in the
current folder. Internally, files are stored as third-party data types
(GEN_DATA_TAG). This type is further defined by a file description which may
be up to four letters. This will show up to the user in the VAR-LINK screen as the
type specified when the file was opened.

When a file is opened with FOpen in FM_WRITE or FM_APPEND mode the
associated variable is locked and inaccessible by any other routines in the
system. It must be closed with FClose to return the variable to not in-use mode,
to write the file type and the GEN_DATA_TAG, and to close the associated
buffer. For files opened in FM_READ mode, the FClose will merely update the
mode of the file in the FILES structure to closed and clear the associated error
status.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 13: Memory Management 133

There is no separate mode to open a file for both reading and writing. However, if
a file is opened in FM_APPEND mode the contents of the file are not erased. All

13.2.1.

locations in the file can either be read from or written to (random access).

The file routines are:

FClose Close a file, this is required for files opened in write
mode.

FCreate Create an empty file.

FDelete Delete a file.

FEof Return TRUE if a file is at the End of File mark.

FFindFirst, FFindNext
FGetC

Used to search all files for a specific file type.

Return a byte from an open file.

FGetPos Return the current file position.

FGetSize Return the number of bytes stored in an opened file.

FOpen Open a file for reading, writing or both.

FPutC Write a byte to a file opened in write mode.

FRead Read multiple bytes from a file.

FSetBufSize Set the size of the write buffer for an opened file.

FSetPos Set the position of the next read or write for an opened
file.

FSetSize Truncate the size of a file opened in write mode.

FSetVer Change the version number of an opened file.

FStatus Return the status of an opened file.

FType Return the file type (description field) of a file.

FWrite Write multiple bytes to an opened file.

Opening Multiple Files for WRITE Mode

This section is only relevant if you plan on opening multiple files simultaneously
in write mode. It requires some understanding of variables, specifically HSYMs
which are explained in the next section. The FILES structure contains an HSYM
of the opened file. HSYMs can become invalid whenever a new symbol table
entry is added or a previous one is removed. In the FILE system the problem of
HSYMs becoming invalid is only a problem if multiple files must be opened at the
same time in WRITE or APPEND mode. Since the file system stores the HSYM
of all opened variables in the FILES structure (this is needed for when the file is
closed), creating a new file (which is just a symbol) with an existing file opened in
WRITE mode may invalidate the previous file's HSYM. To get around this
problem in the file system just use FCreate to create multiple files that must be
opened simultaneously in WRITE mode before they are opened. This will insure

TI-89 / TI-92 Plus Developer Guide

Not for Distribution

Beta Version January 26, 2001

134

Chapter 13: Memory Management

13.3.

that the FOpen calls to open the files will not invalidate any previous HSYMs
since the variables will have already been created.

Managing Variables

All variables are stored in the symbol table. The symbol table is setup as follows.
There is one home folder which may contain variables or folders, although it only
contains folders in the current system. It is a dynamically (in the heap)
maintained array of SYM_ENTRYSs. In the case of a folder the value pointer
points to another dynamically allocated array of SYM_ENTRYs (one level)
otherwise it points to the symbols value in the heap. Folder main always exists in
this home folder and cannot be deleted. Variable and folder names are eight
characters maximum. Names are arranged alphabetically within each array of
SYM_ENTRYs. When a variable whose data is stored in Flash is executed or
displayed in an application (that is, it is “in-use”), a copy of it is stored in RAM
and a duplicate SYM_ENTRY (called a twin) is temporarily created immediately
preceding the original SYM_ENTRY.

The SYM_ENTRY structure is defined as follows.

typedef struct {
BYTE Name[8];
BYTE MUST_BE_O;
BYTE Version;
FLAG_TYPE Flags;
HANDLE hVal;

} SYM_ENTRY;

* Name is a one to eight byte zero-terminated name.

» Version is set by the system to one of the values: TV_TI_92, TV_PARM,
TV_INTERNAL, TV_NGIN, TV_SPAM, TV_CRAM, TV_3RDPARTYAPP,
TV_SCRAM.

* Flags (type WORD) may be one of the values: GRAPH_REF1,
GRAPH_REF2, SF_STAT_REF, SF_LOCK, SF_INUSE, SF_SELECTED,
SF_RECEIVED, SF_FOLDER, SF_INVIEW, SF_EXTMEM, SF_EM_TWIN,
SF_COLLAPSE, SF_PARM. The system normally handles the flags for a
symbol. An app may set the SF_INUSE flag bit to signal it is using a variable
and that it should not be used by another app.

* VAR_LINK will not display any variables with their SF_INUSE bit set or those
that have an hVal of NULL. Setting the SF_LOCK bit will prevent VarStore
from writing to the variable.

e The hVal is the handle of the data for the symbol.

In general, symbol table routines do not return direct pointers to SYM_ENTRY's
(the exceptions being SymFindFirst , SymFindNext , and SymFindPrev).

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 13: Memory Management 135

Instead they return an HSYM value. An HSYM is a combination of a handle to
the folder of a particular symbol along with the offset into the folder of that
symbol. The symbol's HSYM value is valid as long as no other symbols are
added to or removed from the symbol's folder. This is because symbols are kept
alphabetically and adding a new symbol may affect the offset of any other
symbols in the symbol’s folder. To convert an HSYM value to a SYM_ENTRY
pointer use the function DerefSym . The dereferenced HSYM value is a direct
pointer into the heap and so it is valid only as long as garbage collection is not
done.

Symbol and folder names are usually passed in token format. The exceptions are
the low-level symbol and folder routines, which should be avoided. The
symbol/folder pointer points to the tag (usually zero) at the high address with any
additional bytes stored from high to low memory. So if the symbol A23456 were
tokenized it would be stored with a zero byte followed by the name followed by a
second zero byte. Capital letters A-Z are always converted to lower case when
tokenized in variable names. If this symbol were passed to a symbol routine, the
address of the second zero byte would be passed. Note that, in order to save
space, one byte variables in the range ‘a’ to ‘'z’ have a single one-byte token
value.

O ial ‘2! L31 141 ‘5! ‘6’ 0

Figure 13.1: Token Representation of VarName A23456

Symbols are located in the symbol table by using the following strategy. First the
system variables are searched. Then, if the symbol is not stand-alone (has an
embedded folder name or implied current user folder or a folder name is passed
as an argument — such as AddSymToFolder) the given folder is searched. If
the symbol is stand-alone, then the folders are searched in the following order:
the current temporary folder if one exists, and then the current user folder
(default folder).

When a stand-alone symbol is added to the symbol table the current temporary
folder is not searched for an existing name. The only way to add a variable to a
temporary folder is with the AddSymToFolder function and specify the desired
temporary folder name. Otherwise, stand-alone symbols are always added to the
default folder. The symbol name structure is shown below:

[folder] [\] [name]

The system reserves certain names for itself. These reserved names include:
e System variables (xmin, xmax, medx1, . ..)

* Reserved function names (y1, y99, xt1, .. .)

e System commands (AndPic, BldData, Circle, . . .)

« System functions (abs, sin, cos, . . .)

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

136 Chapter 13: Memory Management

The system variables and reserved function names is a finite list that is defined in
Appendix B of the TI-89 / TI-92 Plus Guidebook and cannot be used for anything
else. The system commands and functions are also reserved; but an application
localizer can redefine their spelling for a particular language. Thus, the list of
system commands and functions is open-ended. In order to allow for redefined
system command and function names, an app can append a digit to each name
it uses which will insure that the name does not conflict with any reserved names
(as long as it does not conflict with a system variable or reserved function name).

As an example: In English, an app can create a variable called EXAKT and store
any value to it. If the same app is run in German, storing to the variable EXAKT
will cause an error because that is the redefined system function for “exact(”. But
the app could store to EXAKTO instead and not worry about a name conflict.

13.3.1. Normal Symbol Routines

In general, an app should use the file system to store any permanent data. The
low-level symbol table routines assume the caller knows precisely which
variables are being worked on. Thus, these routines do limited checking for
things like locked, in-use or invalid variable names as well as no type checking.
The TI-BASIC variable routines are available to call and, unlike the low-level
routines, they do extensive checking. Their parameters are passed on the estack
and all errors cause exceptions. These routines are:

cmd_archive
cmd_copyvar
cmd_delfold
cmd_delvar
cmd_lock
cmd_movevar
cmd_newfold
cmd_rename
cmd_unarchiv

cmd_unlock

DerefSym

FolderCur
FolderGetCur
push_getfold

Archive one or more variables.

Copy one variable to another.

Delete one or more empty folders.

Delete one or more variables.

Lock one or more variables.

Move a variable from one folder to another.
Create a new folder.

Rename a variable or folder.

Unarchive one or more variables.

Unlock one or more variables.

Dereference an HSYM, returning a pointer to a
SYM_ENTRY.

Set current default folder.
Get current default folder.

Get current default folder (TI-BASIC version of
FolderGetCur).

TI-89 / TI-92 Plus Developer Guide

Not for Distribution

Beta Version January 26, 2001

Chapter 13: Memory Management 137

push_setfold — Set current default folder (TI-BASIC version of FolderCur).
TokenizeSymName — Tokenize a name and check for invalid or reserved names.
VarRecall — Look-up a variable (returning its HSYM).

VarStore — Store a value to a variable.

In order to use most of these routines, the variable names must be tokenized and
pushed onto the estack. TokenizeSymName does this as well as checking for
invalid names. There are only two routines for storing to and retrieving variable
values: VarStore and VarRecall . This is because there are many system
variables that are not in the symbol table (system variables are only accessible
through VarStore and VarRecall). VarStore also does extensive type checking
to protect certain variable types. For example, it is illegal to copy anything but a
program to another program or a data variable to another data variable.
VarStore must also insure that certain system variables are only stored to in the
proper mode. As an example, tmin which is used in parametric graphing, can
only be stored to in parametric graph mode and it has a limited range of values
that can be stored to it. VarStore does all of the necessary type and value
checking for all variables. To reiterate, the low-level routines do no type or value
checking and should be used with extreme caution.

Note: Routines that take a variable number of arguments (cmd_delvar , cmd_delfold ,
cmd_lock , cmd_unlock , cmd_archive , cmd_unarchiv) require an END_TAG on the
estack to mark the end of the parameter list of variable names passed to them.

13.3.2. Storing and Retrieving Variable Data

As noted earlier, the file system is the preferred method for an app to store or
retrieve data. VarStore is the routine to store to a variable, and VarRecall is the
routine to access a variable. These routines are complicated because of the
built-in graphing application and the restrictions on the predefined system
variables. When a variable is accessed while graphing or building a table, a flag
in the symbol table entry for that variable is set. Whenever a store (or any
change, including delete, rename, etc.) is done to a variable that already exists,
the flags (one for each of the two possible graphs) must be checked to know if
the graph and table are now incorrect because the variable changed. Other
actions can also cause the graph or table to be incorrect — for example,
changing the angle mode or folder.

It is even more important to use VarRecall and VarStore for system variables,
some of which are not in the symbol table. In addition to the graph reference
flags, the type or range of a value must be checked before storing to some of the
system variables, and storing to some of them causes other system

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

138 Chapter 13: Memory Management

variables to automatically change. Care must be taken when VarRecall or
VarStore are bypassed by reading or writing directly to any variable using the
low-level symbol table routines. The file system uses VarStore and VarRecall .

13.3.2.1. Store and Recall Look-up Paths

There are two types of folders: user folders and local (temporary) folders. There
is always a current user folder which can be selected on the mode screen. The
default current folder is the main folder and differs from any other user folder only
because it cannot be deleted. A temporary folder is created and named by the
system anytime a user function or program begins execution. Each new
function/program creates another temporary folder. When the function/program is
complete, the corresponding folder is deleted. The only variables in the
temporary folder are the parameters of the function/program and any variables
listed in a LOCAL command. System variables are considered to be outside the
folders (even though some, such as the graph functions, are actually in the main
symbol table). A specific user variable can be accessed from anywhere by
including the path (user folder and backslash) with the name. For example, folder
name\variable name. The following look-up paths are for the general case and
do not include all the flags, conditions, etc. that must be checked once the
variable has been found. See sections 13.3.2.2 Recall Look-up Path and
13.3.2.3 Store Look-up Path for details.

13.3.2.2. Recall Look-up Path

» Is the variable a system variable? These are special cases and cannot have
a specified path.

« If a complete path is specified, return the HSYM handle for that variable, or if
it does not exist, return H_NULL.

» If there is a backslash followed by the variable name, return the HSYM
handle for that variable in the current user folder, or H_NULL if it does not
exist.

« If there is not a path specified, check for that variable name in the current
temporary folder. If it exists, return the HSYM handle. There may be no data
associated with the variable yet if it was created by a LOCAL command but
has not been initialized.

« If the variable does not exist in the current temporary folder, check the
current user folder. If it exists, return the HSYM handle.

» Otherwise, the variable does not exist in the current path and H_NULL is
returned.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 13: Memory Management 139

13.3.2.3.

13.3.2.4.

Store Look-up Path

» Isthe variable a system variable? These are special cases and cannot have
a specified path. Many have restrictions on the domain and type of data
allowed.

» If a complete path is specified and that variable already exists, replace the
previous contents with the new contents (after verifying all flags, data type,
etc.). Otherwise, create that variable with the given value.

» If there is a backslash followed by the variable name and that variable
already exists in the current user folder, replace the previous contents with
the new contents (after verifying all flags, data type, etc.). Otherwise, create
that variable with the given value.

» Ifthere is not a path specified, check for that variable name in the current
temporary folder. If it exists, replace the previous contents with the new
contents (after verifying all flags, data types, etc.).

» If the variable does not exist in the current temporary folder, check the
current user folder. If it exists, replace the previous contents with the new
contents (after verifying all flags, data types, etc.). Otherwise, create that
variable in the current user folder.

HSYM VarRecall (BYTE * Var, RECALL_FLAGS Flags)

VarRecall looks up a variable returning its HSYM or H_NULL if not found.
VarRecall handles system variables even if they are not in the symbol table. Var
is a pointer to the terminated zero of the tokenized variable name. Flags can
have the following values although 0 and VR_NO_SYS VARS are the two flags
normally used.

Flags

0 — No restrictions.

VR_LINK — Used by link code only.
VR_FUNC_NAME — “y1(" entered, not “y1”.
VR_NO_SYS_VARS — Do not return system variables.

The recall routine returns the HSYM handle to the symbol table which remains
valid until a variable in the same folder is added, deleted, or renamed. For the
system variables that are not stored in the symbol table, there is one dummy
symbol table entry. When a system variable not in the table is referenced, that
entry will point to a copy of the desired system variable (with a tag added) and
that handle will be returned. Since this one dummy entry is used for many system
variables, the calling routine may have to copy the contents if it desires to have
access to more than one value at a time. There is another function, HToESI, that
will return a pointer of the type EStackindex to the data type tag.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

140 Chapter 13: Memory Management

For example:
HSYM hsym; /* handle */
SYM_ENTRY *symp; [* pointer */

EStackindex estackindex, nPtr; /* pointer */
hsym = VarRecall(nPtr, 0); /* where nPtr is the pointer to the
variable name in tokenized format */
if(hsym) {
symp = DerefSym(hsym) ; /* symp points to symbol table entry */
if(symp->hVal) { /* hVval is the handle to the data part of the
variable which can also be null. */
estackindex = HToESI(symp->hVal);
[* estackindex points to the last byte of the data,
which contains the type tag.
*

VarRecall may throw the following errors:

INVALID PATHNAME_ERROR — Invalid variable name.
ER_FOLDER — The variable is a folder.
ER_INVALID VAR_REF — The variable cannot be referenced in the

current mode. Some variables are only
accessible by the application that created
them, like C1 ... C99, which can only be
accessed by the data matrix editor. Other
variables can only be accessed under certain
conditions, like the stat variables, which can
only be accessed if a stat calculation has been
made.

ER_RESERVED — The VR_NO_SYS VARS flag was set and the
variable to be recalled was a system variable.

ER_UNDEFINED_VAR — Normally, H_NULL is returned if the variable is
not found. This error is thrown if an attempt is
made to execute an undefined function while
graphing.

Most system variables cannot be used in a function that is being graphed, either
because they change too often or because they are used by the graph routines
themselves (for example, xmin or xc). When these variables are accessed while
graphing, an error is reported by VarRecall . Locked variables may be looked up
with VarRecall .

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 13: Memory Management 141

If a variable’s in-use flag (SF_INUSE) is set, the variable is being used by an
application. Depending on the application, the handle to the data may be null or
the data may not be in a useable form. It is up to the caller to test the SF_INUSE
flag and take appropriate action.

13.3.2.5. HSYM VarStore (BYTE * DestVar, WORD Flags,
WORD SourceSize [, parml] [, parm2] [, parm3] ...)

VarStore stores values, prepares a variable to be stored to, or stores individual
values to elements of a list or matrix. The data type and domain of system
variables are verified to be correct. System variables not in the symbol table will
return H_NULL. Variables in the symbol table will return their HSYM handle. The
Flags parameter determines the meaning of the remaining parameters.

Flags

STOF_ESI — parmlis an EStackindex pointing to a locked block of memory,
most likely the estack.

STOF_HESI — parmlis a handle to a block of memory containing the data to
store (will be locked initially).

STOF_ELEMENT — parmlis an EStackindex pointing to the element to store. For a
list, parm2is a WORD indexing the element to store to and
parm3 (also a WORD) must be zero.

For a matrix, parm2 indexes the column of the matrix to store
to and parm3 indexes the row. The indexes for both lists and
matrices start at one.

STOF_NONE — Nothing is assumed about the source, no copy is done (left to
caller). It creates the symbol table entry, verifies the name and
flags, and other conditions.

USER_FUN_TAG — parml points to the USER_FUN_TAG of the function to store.

Otherwise Flags must equal TEXT _VAR_TAG, GDB_VAR_TAG,
PIC_VAR_TAG, DATA_VAR_TAG, or GEN_DATA_TAG. The destination is
verified to have the same type as the source. The copy operation is not done.

SourceSize is the size of the source data including the tag but not the size word
stored in the heap. If it is zero then the size of the estack expression pointed to
by parm1 will be used for STOF_ESI, STOF_HESI, and STOF_ELEMENT.
Otherwise, the new value is not allocated (return value->hSym may still not be
H_NULL if previous data existed in that variable). For STOF_ESI, STOF_HESI,
and STOF_ELEMENT the source is copied to the new destination.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

142 Chapter 13: Memory Management

For TEXT_VAR_TAG, GDB_VAR_TAG, PIC_VAR_TAG, DATA_VAR_TAG, or
GEN_DATA_TAG the source is not copied but the destination is verified to have
the same data type (TEXT, GDB, PIC, DATA, or OTH). If SourceSize is not zero
then the destination is allocated to the given size; it is up to the caller to do the
actual copying of data.

VarStore may throw the following errors:

ER_DATATYPE, ER_DOMAIN — The value stored is in the wrong domain or of
the wrong type for the variable being stored to.

ER_DIMENSION — lllegal index when storing to a list or matrix.

ER_FOLDER — The variable is a folder, which cannot be
stored to.

ER_ILLEGAL_IN_FUNC — Functions can only store to local variables.

ER_INVALID_VAR_REF — The variable cannot be stored to in the current
mode, see VarRecall also.

ER _LOCKED, ER_VAR_IN_USE — The variable is locked or in-use and cannot be
stored to.

ER_MEMORY — Not enough memory to do the store operation.

ER_PROTECTED — The variable cannot be stored to by the current
app in the current mode.

ER_RESERVED — The given variable is a system reserved
variable and the value to be stored is invalid for
this variable.

INVALID_PATHNAME_ERROR — Invalid variable name.

13.3.2.6. General Data Storage

Most of the data that will be stored in a variable will be on the estack or in a
buffer in the heap. To store floating-point data contained in a C variable, use
push_Float (var) and use top_estack as the EStackindex for VarStore . This
automatically rounds the mantissa to 14 digits and adds the float tag. The caller
must remember to restore top_estack to its original value.

Example:

BCD16 fit;

const BYTE Name[] = {\0', 't 'e', 'm’, 'p', \0' };
EStackindex old_top = top_estack;

push_Float(flt); /* round to 14 digits, add float tag */
VarStore(Name+5, STOF_ESI, 0, top_estack);
top_estack = old_top; /* restore original top_estack */

Some variables are system protected. These include programs and functions
(TI-BASIC or ASM), data variables, graph databases, third-party data-types

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 13: Memory Management 143

13.3.2.7.

13.3.3.

(includes files), pictures, and text variables. Only variables of the same type can
be copied to a system-protected variable.

If the variable name already exists, the lock flag is checked — a variable that is
locked or archived cannot be overwritten. VarStore throws an error in this case.
System variables cannot be locked and some system variables cannot be
changed by the user. VarStore also checks the in-use flag. Any variable being
used by an application cannot be overwritten except by that application. It cannot
be deleted, renamed, or linked either. The in-use count is verified to be 0 for
functions and programs.

If the variable is not a system variable, locked, system protected, or in use, a
value can be stored to it no matter what it contained before. However, there are
type restrictions on individual elements of lists or matrices. Usually, VarStore
makes sure there is enough memory left to store the new contents to the variable
before deleting the current contents of the variable. When storing to an existing
variable, both graph reference flags are tested. If one or both is set, the
corresponding dirty graph and dirty table flag(s) are set to indicate the graph and
table are no longer valid.

Storing to an individual element or submatrix of a matrix or list does the same
checks as for an existing variable and updates the length. In addition, the data
type of the element needs to be correct (expression, relation, string).

System Functions

Only functions with the correct function argument can be stored in the variables
reserved as system functions. These are y1(x) — y99(x), xt1(t) — xt99(t), yt1(t) — yt99(t),
r1(6) —r99(0), ul(n) — u99(n), y1'(t) — y99'(t), and z1(x, y) — z99(x, y). They can
be single line or multiline functions but an error is returned if the user tries to
create any other data type with those names or if the number of arguments is
incorrect. Since they are system variables, they cannot be locked and must be in
the main folder. Empty functions are not valid and should not be added to the
symbol table. This is true for user functions also.

Low-Level Routines

Low-level routines allow direct access to the symbol table with little data type,
status checking, or regard to reserved names. There are general purpose utility
routines, routines to directly manipulate folders (including temporary folders) and
variables. As stated earlier, they do NOT use tokenized names but deal with
names in C string format (the pointer to the first letter in the name is passed, not
to the zero byte terminator as with tokenized names).

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

144 Chapter 13: Memory Management

13.3.3.1. Utilities

HSymDel — Delete a variable given its HSYM.

HSYMtoName — Create a fully qualified (name and folder) symbol name from an
HSYM.

MakeHsym — Create an HSYM given a SYM_ENTRY pointer and the handle
of its folder.

ResetSymFlags — Apply a mask to the flag byte of all variables in the system.

SetOK — Set the global system variable OK to one or zero.

StrToTokN — Convert a zero terminated symbol name (ASCIIZ) into a

tokenized format (does NOT handle reserved names).

13.3.3.2. Low-Level Folder Routines

AddSymToFolder — Add a symbol to a specific folder.

FindSymInFolder — Search for a symbol in a specific folder.

FolderAdd — Directly add a folder to the home folder.

FolderCount — Return the number of symbols in a folder.

FolderDel — Delete a folder (even if not empty).

FolderFind — Look for a folder.

FolderFlags — Set or clear flags in all folders in the system.

FolderOp — Lock or unlock a folder or all folders in the system with

HeapLock or HeapUnlock so they will not move.

FolderRename — Rename a folder.

13.3.3.3. Low-Level Symbol Routines

SymAdd — Add a symbol to the symbol table.

SymbDel — Delete a symbol from the symbol table.
SymFind — Look for a symbol in the symbol table.
SymFindFirst — Find the first symbol in a folder (or all folders).
SymFindFoldername — Return name of folder for SymFindFirst/Next.
SymFindHome — Find a symbol in the home folder.
SymFindMain — Find a symbol in the main folder.
SymFindNext — Find next symbol after calling SymFindFirst.
SymFindPrev — Find previous symbol.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

145

14. Data Types

The TI AMS Operating System (OS) supports the following data types:

» Expressions

e Lists

e Matrices

e Data Variables

e Text Variables

e Strings

e Graph Databases

e Pictures

* Programs

e Functions

* Assembly Programs
e Third Party Data Types (FILES)

Note that there are two additional data types: figures and macros. They are only
supported by the, at one time, built-in geometry application which is now a
separate application.

This chapter defines the structure of the data objects that may appear in each of
the above data types. These data objects all have an embedded tag value which
is always the last value stored in a data object. The first word (Most Significant
Byte first) of every data object is the length of the object. This length does not
include itself, so to find the tag associated with any object, add the length of the
object to the starting address of the object plus one. There is a routine, HTOESI,
that given the handle of a data object will return a pointer to the tag byte for that
object. Shown below is a list of the data tag values along with other associated
tags (END_TAG, COMMAND_TAG, END_OF_SEGMENT).

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

146 Chapter 14: Data Types

Tags Values
FUNC_BEGIN_TAG 23
PRGM_TAG 25
NONNEGATIVE_INTEGER_TAG 31
NEGATIVE_INTEGER_TAG 32
POSITIVE_FRACTION_TAG 33
NEGATIVE_FRACTION_TAG 34
FLOAT_TAG 35
STR_DATA_TAG 45
LIST_TAG 217
USER_DEF_TAG 220
DATA_VAR_TAG 221
GDB_VAR_TAG 222
PIC_VAR_TAG 223
TEXT_VAR_TAG 224
COMMAND_TAG 228
END_TAG 229
END_OF_SEGMENT 233
ASM_PRGM_TAG 243
GEN_DATA_TAG 248

Table 14.1: Data Tag Values

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 14: Data Types 147

14.1. Expression

There are several different data objects that can appear as an expression.

14.1.1. Non-Negative or Negative Integers
Description Bytes
Data length of integer 2

Non-negative/negative integer (bignum first) binary data | var. max 255

Length of data field 1
NONNEGATIVE/NEGATIVE_INTEGER_TAG 1

Table 14.2: Data Object for a Non-Negative or Negative Integer

14.1.2. Positive or Negative Fractions
Description Bytes
Data length of fraction 2

Positive/negative denominator (bignum first) binary data | var. max 255

Length of denominator 1
Positive/negative numerator (bignum first) binary data var. max 255
Length of numerator 1
POSITIVE/NEGATIVE_FRACTION_TAG 1

Table 14.3: Data Object for a Positive or Negative Fraction

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

148 Chapter 14: Data Types

14.1.3. Floating-Point Numbers

Description Bytes

Data length of FP number 2
Exponent/sign 2 0

BCD mantissa value (MSD at lowest address) 7 (MSD->LSD)
FLOAT_TAG 1

Table 14.4: Data Object for a Floating-Point Number

0 Bit 7 of the most significant (lower address) Exponent/Sign byte is the mantissa sign. The
remaining 15 bits represent the exponent and exponent sign (0x4000 = exponent of 0,
0x3FFF = exponent of -1, 0x4001 = exponent of +1).

14.1.4. All Other Tags Not Listed Here

In general, an expression is any statement that starts with a tag not listed below.
That is anything that is not a list, matrix, function, program, picture, string, text,
graph database, assembly language program, or a third party data type (FILE).
The preceding three types (integers, fractions, and floating-point numbers) are
only special cases of expressions.

14.2. List
A list is a collection of expressions. A list may only contain expressions and
nothing else.
Description Bytes
Data length of list 2
END_TAG 1

Expressions (1 per element of list) | variable

LIST_TAG 1

Table 14.5: Data Object for a List

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 14: Data Types 149

14.3. Matrix

A matrix is stored as a list of lists, guaranteed to have scalar elements resulting
in a rectangular matrix. Each list represents one row of the matrix, surrounded by
a LIST _TAG/END_TAG pair as shown below.

Description Bytes

Data length of list 2

END_TAG 1
END_TAG (one for each row) 1

Expressions (1 per element of list) | variable
LIST_TAG (one for each row) 1
LIST_TAG 1

Table 14.6: Data Object for a Matrix

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

150 Chapter 14: Data Types

14 .4. Data Variable

Description Bytes
Length of Data Variable 2
Column Width (# chars -2) 1
Number of Columns (0-99, 0 = no column data) 1

Number of Formulas (0-99, 0 = no formulas)

Number of Titles (0-99, 0 = no titles)

DATA_VAR_TAG 1

Table 14.7: Data Object for a Data Variable

These blocks are repeated from zero to 99 times, depending upon the
corresponding Number field immediately preceding the block.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 14: Data Types 151

14.5. Text Variable

Description Bytes
Data length of text 2
Position of edit cursor 2

Text data for line with 0xOD terminator (text starts at the byte after the edit | variable
cursor position and ends at the byte before the zero byte terminator)

0 (end of text) 1
TEXT_VAR_TAG 1

Table 14.8: Data Object for a Text Variable

Note that the first character of each line can be one of the following:

0Ch Page Break character
'C' Executable Calculator Command follows
‘P Print Object (as in a Lab Report)

Table 14.9: Valid first characters for a Text Variable Data Object

14.6. String Variable

Description Bytes
Data length of string. 2

0 1
String, stored left to right. variable
0 (end of string) 1
STR_DATA_TAG 1

Table 14.10: Data Object for a String Variable

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

152 Chapter 14: Data Types

14.7. Graph Database

There are several differences between TI-92 graph databases and

TI-89 / TI-92 Plus graph databases which are noted below. TI-92 graph
databases can be sent to the TI-89 / TI-92 Plus but TI-89 / TI-92 Plus graph
databases cannot be sent to a TI-92. Once it is received by the

TI-89 / TI-92 Plus, a TI-92 graph database still has the TI-92 version number
(version=TV_TI_92 in the SYM_ENTRY structure for that variable in the symbol
table, see section 13.3 Managing Variables), which allows it to be sent to
another TI-92 from the TI-89 / TI-92 Plus.

Description Bytes
Data length of Graph Database 2
Number of Graphs (1 = one graph mode, 2 = two graph mode) 1
Angle Mode (Radian = 1, Degree = 2) 1
Real/Complex Mode 1

Mode Value

Real 1

Rectangular 2

Polar 3
Graph Mode — Graph 1 (if in two graph mode this is the graph on 1
AP_SIDE_A)

Mode Value

Function 1

Parametric 2

Polar 3

Sequence 4

3D 5

Differential Equations 6
Active Side — two graph mode only (O = gr_active pointing to graph 1, 10d
1 =gr_active pointing to graph 2)
Graph Mode of Graph 2 — two graph mode only (see above graph modes |10
for values)

Table 14.11: Data Object for a Graph Database

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 14: Data Types 153

Description Bytes
Split Setting — two graph mode only 10
Description Setting
Full 1
Horizontal 2
Vertical 3
Split Ratio — two graph mode only 10d
Description Value
Split Ratio 1:1 1
Split Ratio 1:2 2
Split Ratio 2:1 3
Graph 1 Range Settings (based on Graph 1 Mode) variable
Function Parametric Folar Sequence 3D [DifEq O
Xmin Xmin Xmin xmin Xmin
Xmax Xmax | xmax Xmax Xmax
xscl xscl xscl xgrid xscl
ymin ymin ymin ymin ymin
ymax ymax |ymax ymax ymax
yscl yscl yscl ygrid yscl
Ax AX AXx AX AX
Ay Ay Ay Ay Ay
xres Omin nmin zmin t0
Bmax | nmax zmax tmax
Bstep | plotStrt zscl tstep
plotStep eyeb tplot
eyeQ diftol
eyeW Estep
ncontour | fldres
xscale ncurves
yscale dtime
zscale
Table 14.11: Data Object for a Graph Database (continued)

TI-89 / TI-92 Plus Developer Guide

Not for Distribution

Beta Version January 26, 2001

154 Chapter 14: Data Types

Description Bytes
Graph 1 Formats 80
Description Value
2 bytes: Flags

Seq Mode Axes: Time =1, 0x8000
Custom or Web =0

Seq Mode Axes: Web =1, 0x4000
Custom or Time =0

Seq Mode Web: Trace =0, Auto =1 0x2000
3D Expanded View: Off =0, 0On =1 0x0800
T1-92 3D Mode Style: WireFrame = 1, 0x0100
Hidden Surface =0

Coordinates: Off=1,0n =0 0x0080
Graph Order: Sequential = 0, Simul =1 0x0040
Grid: Off =0,0n=1 0x0020
Axes: Off =1,0n=0 0x0010
3D Mode Axes: Normal =0, Box =1 0x0008
Labels: Off=0,0n=1 0x0004
Leading Cursor: Off=0,0n =1 0x0002
Coordinates: Rect = 0, Polar =1 0x0001

1 byte: x axis for custom axes in Seq or DIfEq Modes | see below
1 byte: y axis for custom axes in Seq or DIfEq Modes | see below
Seq Mode: n=(-1),u =0,
specific u# function = 1-99
DifEq Mode: t = 0, y = 100,
specific y# function = 1-99, y' = -100,
specific y#' = (-1) — (-99)
2 bytes: Flags

DifEg Mode Axes: Time = 0, Custom = 1 0x0010
DifEq Fields: FLDOFF = 0, SLPFLD or 0x0004
DIRFLD =1

DifEq Fields: SLPFLD =0, DIRFLD =1 0x0002
DifEq Solution Method: RK =0, Euler = 1 0x0001

1 byte: TI-89 / TI-92 Plus 3D Mode Style

Wire Frame 0
Hidden Surface 1
Contour Levels 2

Wire and Contour 3
Implicit Plot 4

1 byte: Unused

Table 14.11: Data Object for a Graph Database (continued)

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 14: Data Types 155

Description Bytes
Number of Graph 1 Functions (may be zero) 1
Function Number (set MSB for yt in parametric mode) 1
Graph 1 Function (copy from symbol table including length) variable

Repeat above two lines for each additional function

Number of initial conditions (= 0 if not Seq or DIfEq mode, or if none exist |1
in Seq or DifEq mode)

Initial Condition Number 1

Initial Condition Expression (including length) variable

Repeat above two lines for each additional initial condition

Graph 1 Table Flags (not included if 3D mode) 1
Description Value
Table connected to trace (on = 1, off = 0) 0x80
Table Independent Ask (on = 1, off = 0) 0x40
Graph 1 tbiStart (not included if 3D mode) 10
Graph 1 Atbl (not included if 3D mode) 10
Graph 1 tblinput (including length [2 bytes] — may be zero) (not included if | variable
3D mode)

Graph 2 Range Setting (if two graph mode) (see Graph 1 Range Settings | variable O
for contents)

Graph 2 Formats (if two graph mode) (see Graph 1 Formats for contents) |8 O

Number of Graph 2 Functions (if two graph mode) (may be zero if same 10
type as graph 1)

Function number (set MSB for yt in parametric mode) 10d
Graph 2 Function (copy from symbol table including length) variable O
Repeat above two lines for each additional function a

Number of initial conditions (= 0 if not Seq or DifEq mode, or if none exist |10
in Seq or DifEq mode, or if graph 1 = same mode)

Initial Condition Number 10
Initial Condition Expression (including length) variable 0
Repeat above two lines for each additional initial condition ... 0

Table 14.11: Data Object for a Graph Database (continued)

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

156 Chapter 14: Data Types

Description Bytes
Graph 2 Table Flags (not included if 3D mode) 1 O
Description Value
Table connected to trace (on = 1, off = 0) 0x80
Table Independent Ask (on = 1, off = 0) 0x40
Graph 2 tbiStart (not included if 3D mode) 10 O
Graph 2 Atbl (not included if 3D mode) 10 a
Graph 2 tblinput (including length [2 bytes] — may be zero) (not included if | variable O
3D mode)
GDB Tag 1

Table 14.11: Data Object for a Graph Database (continued)

0 This field is only present in a two graph mode graph database (i.e., Number of Graphs is
equal to 2).

0 eyeW and ncontour are not present on the original TI-92. xscale, yscale, and zscale are not
system variables and are for internal use only (zscale was not present on the TI-92). The
system variable zscl is no longer used on the TI-89 / TI-92 Plus although it still exists for
compatibility with the TI-92.

0 Differential Equation mode was not available on the original TI-92.

0 TI-92 graph databases only contain the first four bytes of graph format data. The TI-92 3D
mode style flag is not used by the TI-89 / TI-92 Plus, which uses the seventh byte for 3D style
information. TI-92 graph databases do not use the 3D Expanded View flag since that was not
available on the original TI-92.

14.8. Bitmap PIC Images

Description Bytes
Data Length of PIC 2
Number of Rows in image 2
Number of Columns in image 2

Bitmap data (8 pixels per byte with the data bits going from most significant | variable
to least significant which correspond to left to right pixels on the screen)

PIC_VAR_TAG 1

Table 14.12: Data Object for a PIC

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 14: Data Types 157

14.9. Tokenized Programs and Functions

Programs and functions are stored similarly and both use the same tag
(USER_DEF_TAG). There are two formats depending on whether the
program/function is tokenized or in text format. The tokenized format is listed
below. There is a routine, GetFuncPrgmBodyPtr , that given a pointer to a
USER_DEF_TAG returns the pointer to the function or program body — that is it
skips all of the parameters and flags.

Description Bytes
Data Length of program/function 2
END_OF _SEGMENT 1
Tokenized statements variable
PRGM_TAG or FUNC_BEGIN_TAG O 1
END_TAG (terminates parameter list) 1
Parameter List variable
In-Use Counter 1

Flag 2 (reserved) O 1
Flag1 O 1
USER_DEF_TAG 1

Table 14.13: Data Obiject for a Tokenized Program or Function

0 This byte is PRGM_TAG for programs and FUNC_BEGIN_TAG for functions.

0 This flag is reserved for future use, except for Bit 0, the LOCK flag. If the LOCK flag is set,
the program will be locked on transmit, or is locked on receive.

0 This flag byte contains the flags listed below. For tokenized programs/functions the
FF_PARSE flag bit will be set to zero.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

158

Chapter 14: Data Types

Description

it of Bits

\

alue

Graph Style (Least Significant Bits)

3

Line

Dot

Thick

Animate

Path

Above

Below

Square

N~N[fojlo|lh~,]WOW[IN|F,]|O

FF_PARSE

0/1

FF_ADD_TO_RECENT

FF_ADD_TO_PRIOR

FF_RECENT

FF_PRIOR

RlRr|lRr|Rr]|k,

Table 14.14: Flag 1 Values

TI-89 / TI-92 Plus Developer Guide Not for Distribution

Beta Version January 26, 2001

Chapter 14: Data Types 159

14.10. Programs and Functions in Text Format

Programs and functions stored in text format have a different format than the
corresponding tokenized format as listed below.

Description Bytes

Data Length of program/function 2

Text of program/function variable

Zero byte

Cursor position for editing
PRGM_TAG or FUNC_BEGIN_TAG
COMMAND_TAG

END_TAG

Flag 3 (not used)

Flag 2 (reserved)
Flag 1
USER_DEF_TAG

e e e S e = L

Table 14.15: Data Object for a Program or Function
Stored in Text

Note that the Flag 3 byte is not used. The Flag 1 and Flag 2 bytes are the same
as for tokenized programs/functions (listed above) except that the FF_PARSE bit
in Flag 1 is set to one.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

160 Chapter 14: Data Types

14.11. Third Party Data

The Third Party Data object is the format used by the FILE system and may be
used by the apps for their own data types.

Description Bytes
Length 2
Contents (format is application dependent) variable
Zero byte 1
Identifier (1-4 ASCII characters) 1-4
Zero byte 1
GEN_DATA _TAG 1

Table 14.16: Data Object for Third Party Data

14.12. Assembly Program

Assembly programs are stored in binary format.

Description Bytes
Length 2
Contents (assembly) variable
ASM_PRGM_TAG 1

Table 14.17: Data Object for an Assembly Program

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

161

15. Expressions and the Expression Stack

This chapter explains the internal data structures used to represent expressions
and how the expression stack (estack) is used to do numeric and symbolic
operations.

15.1. Overview

The AMS Operating System (OS) evaluates both numeric and symbolic
expressions. Expressions are represented in a tagged internal representation
called tokenized form. The tokenized form explicitly represents the hierarchical
ordering of operations and their operands.

The system provides a tokenizer that uses a lexical scanner and a parser to
translate text strings into tokenized form. Tags are used to delimit each element
of this form. Numbers, variables, operations, and functions all have associated
tag values that identify them. However, some symbols that appear in the text
representation do not appear in the tokenized form. For example, delimiters such
as commas, parentheses, braces, and brackets are implied by the structure of
the tokenized form.

The system also provides a simplifier, which performs evaluation and
simplification. The simplifier attempts to reduce an expression to its simplest
form. It calls upon a variety of subsystems to perform the operations that are
specified by the expression. The work of the tokenizer and simplifier are
performed primarily on a stack structure called the expression stack.

Finally, the system provides a detokenizer. As the name implies, the detokenizer
translates the tokenized form of an expression into the corresponding text string.
The system also provides the means to convert the tokenized form into a pretty
printed form that can be displayed.

15.2. Contiguous Tokenized Polish Representation

The tokenizer produces a form called contiguous tokenized Polish
representation. In this representation an expression occupies one contiguous
block of memory allocated as an array of Quantums. A Quantum is defined in the
system by the C declaration:

typedef unsigned char Quantum;

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

162 Chapter 15: Expressions and The Expression Stack

This representation has two primary advantages — space efficiency and
relocatability. No internal pointers are necessary to manipulate or maintain the
structure. Since the hierarchical ordering of operations is implicit in the
representation, delimiters such as parentheses are not needed to enforce the
ordering.

Tokenized Polish form places the operands deepest in the representation and
the operator higher or on top of the operands. For example, the simple sum a + b
would produce the form:

+ (highest address)
b
a (lowest address)

This representation is also written
ab+

with the lowest address on the left and highest address on the right. It is
important to remember that this form is always interpreted from high address to
low address. Evaluation always encounters the operator before its operands.
This method is different from reverse Polish form, which encounters the
operands before the operator.

Since each operand can also be an expression, any level of complexity can be
represented. Here are a few more examples of expressions and their Polish
representations. Remember that the tokenizer produces the Polish
representation by reading the text expression from left to right, but thereatfter, the
system interprets the Polish representation from right to left (or high address to

low).

Expression Polish representation
a*b+c ab*c+

a*(b+c) abc+*

a*b+c/d gb*cd/+

a*(b+c)/d apc+*d/

X*y"n-z Xny~*z-

Table 15.1: Examples of Polish Representations

15.2.1. Tags

Tags are single Quantum values that are used in the tokenized form to represent
most elements of the structure and also are used to delimit those elements
whose representation requires more than a single Quantum. For example, the
single letter variables a through z, the symbolic constants mand e, the Boolean

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 15: Expressions and The Expression Stack 163

constants true and false, and most built-in mathematics functions and operators
are represented using a single tag. Floating-point numbers, rational numbers,
and integer numbers each require an identifier tag on top of the standard
representation of the number. All of the tag values are defined in tiams.h. Each of
the tag names ends with the characters “_TAG.” The following sections describe
the various tags and what they identify or represent.

15.2.2. Numbers

The Operating System includes two separate number systems — the rational
number system which contains tagged integers and tagged fractions, and the
floating-point number system, which uses Binary Coded Decimal (BCD)
floating-point numbers. A primary difference between these number systems is
that the rational system is by definition exact and the floating-point system is
assumed always to be an approximation.

In the rational system the number of digits is limited but not fixed. If an arithmetic
operation on two rational numbers completes successfully, then the result is
exact. No loss of precision occurs. In the floating-point system the number of
digits is fixed, and therefore, loss of precision is always a possibility. Thus, the
result of a floating-point operation is considered to be an approximation.

The rational numbers include tagged integers and tagged fractions. The term
tagged integer is used to distinguish these numbers from the C programming
types — int, short, long, etc. A tagged integer has three elements — a tag at the
highest address, a length, and a magnitude.

An integer magnitude is represented as a sequence of adjacent quantums, with
the least significant quantum deepest (lowest address) and the most significant
quantum nonzero. For example, the 16 bit integer 65534 (OXFFFE) would appear
as 254 255 (OxFE 0xFF) with the least significant quantum deepest.

A sized integer magnitude is a one-quantum length field on top of an integer
magnitude. With the quantum size of one byte, the length can be 0 through 255
guantums, and the maximum possible sized integer magnitude is

256°° —1=10". Thus, the sized integer magnitude for the integer 65534 would
appear as 254 255 2 (OxFE OxFF 0x2).

A non-negative integer is represented as a NONNEGATIVE_INTEGER_TAG on
top of a sized integer magnitude. Thus, the tagged integer representation of the
integer 65534 is 254 255 2 NONNEGATIVE_INTEGER_TAG.

A negative integer is represented as a NEGATIVE_INTEGER_TAG on top of a
sized integer magnitude. So, the tagged integer representation of the negative
integer -65534 is 254 255 2 NEGATIVE_INTEGER_TAG.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

164 Chapter 15: Expressions and The Expression Stack

Integer value Tagged integer representation

-5 51 NEGATIVE_INTEGER_TAG

256 0 1 2 NONNEGATIVE_INTEGER_TAG
65538 2 01 3 NONNEGATIVE_INTEGER_TAG
-1000000 64 66 15 3 NEGATIVE_INTEGER_TAG

Table 15.2: Tagged Integer Examples

The integer zero is a special case in this representation. Zero has no integer
magnitude but is represented simply by a NONNEGATIVE_INTEGER_TAG on
top of a zero length field as follows, 0 NONNEGATIVE_INTEGER_TAG. Note
that this is the only valid representation of a simple tagged integer zero. The
system never generates nor expects a NEGATIVE_INTEGER_TAG ontop ofa 0
length field nor any tagged integer with a nonzero length field and a zero
magnitude. These invalid representations will cause unexpected system
behavior.

Fractions include two sized integer magnitudes — one for the numerator and one
for the denominator. A positive fraction is identified by a
POSITIVE_FRACTION_TAG. A negative fraction is identified by a
NEGATIVE_FRACTION_TAG. The denominator is placed deepest in the
representation, then the numerator, then the tag on top. Fractions are always
fully reduced, that is, the greatest common divisor of the numerator and
denominator is 1.

Fraction value Tagged fraction representation

1/2 2111 POSTIVE_FRACTION_TAG

-2/3 3121 NEGATIVE_FRACTION_TAG

5/256 01251 POSITIVE_FRACTION_TAG
-999999/1000000 64 66 15 3 63 66 15 3 NEGATIVE_FRACTION_TAG

Table 15.3: Tagged Fraction Examples

The fraction representation includes two special cases. They are called signed
zeros. Signed zeros occur when the system performs symbolic operations such
as computing limits or simplifying expressions involving infinity. They are
represented by a fraction whose numerator is 0 and whose denominator is 1.
Thus, +0is 1 1 0 POSITIVE_FRACTION_TAG, and-0is110
NEGATIVE_FRACTION_TAG. These are the only valid fractions with a zero
numerator, and the denominator must be 1. The system does not generate nor
expect any other fraction whose numerator or denominator is zero. Invalid
fractions will cause unexpected behavior.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 15: Expressions and The Expression Stack 165

The representation of Binary Coded Decimal (BCD) floating-point numbers is
described in detail in the TI-89 / TI-92 Plus Sierra C™ Reference Manual,
chapter 2. Compiler , section 2.9.4 Floating-Point Representations . In simplest
terms they consist of a two byte quantity which represents the algebraic sign of
the number and the exponent or power of 10 by which the mantissa is multiplied.
This quantity is followed by a mantissa, which represents the fixed number of
significant digits in the number. Each nibble or hexadecimal digit of each byte
represents a single decimal digit.

Tagged floating-point numbers are represented by a FLOAT_TAG on top of a
14 digit floating-point number. The float number is placed as it would normally
appear in memory with the sign/exponent at the lowest address, and then, the
mantissa with the most significant digits at the lower address and the least
significant digits at the higher address. For example, the tagged floating-point
representation for the float approximation of rris:

0x40 0x00 0x31 0x41 0x59 0x26 0x53 0x58 0x98 FLOAT_TAG.

15.2.3. Variables, Units and Physical Constants

Variables are represented in two ways. Since single alphabetic characters (a—z)
are most often used to represent variables, each of them is identified by a unique
tag value. Thus, the variable a is represented by A_VAR_TAG, the variable b is
represented by B_VAR_TAG, and so on, through the variable z represented by
Z VAR_TAG.

Multicharacter variable names and all single nonalphabetic character names are
identified by a VAR_TAG at both ends of the sequence of characters. The name
characters are placed between the VAR_TAG's with the first character deepest.
The Operating System uses an extended ASCII character set described in
Table 4.2: Character Set. Valid name characters are specified in the

TI-89 / TI-92 Plus Guidebook. Names are case insensitive, so x and X are both
tokenized as X_VAR_TAG, and abc, Abc, AbC, and so on, are all tokenized as
VAR_TAG a b ¢ VAR_TAG.

Variable Name Representation

X X_VAR_TAG

baz VAR_TAG b a z VAR_TAG

0 VAR_TAG 6 VAR_TAG

Theta VAR _TAGthetaVAR_TAG
& 295 VAR _TAG & _295VAR_TAG

Table 15.4: Variable Name Examples

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

166 Chapter 15: Expressions and The Expression Stack

The Operating System has system variables that are reserved for special
purposes. These reserved variables are used in a variety of ways in graphing,
plotting, table generation, and statistical computations. They are numbered and
are represented as a SYSVAR_TAG on top of the corresponding system variable
number. For example, the function graphing variable xmin is represented by
SV_XMIN SYSVAR_TAG, and the statistics variable >x is represented by
SV_SIGMA_X SYSVAR_TAG.

Two special naming conventions are associated with the underscore character

‘ . Variable names that end with an underscore are assumed to be complex
variables. Thus, the variable z is assumed to be real, but the variable z_ is
assumed to be complex. Variable names that begin with an underscore are
assumed to be unit names or the names of physical constants, which include a
unit expression. For example, the unit meter is named _m, and the unit kilogram
is named _kg. The physical constant for the speed of light is named _c and
evaluates to the unit expression 299792458.0 _m/ _s.

15.2.4. Other Constants

Arbitrary real constants @1, @2, . . ., and arbitrary integer constants @n1,
@n2, ... behave somewhat like variables and somewhat like constants. The
number following the @ symbol (1, 2, etc.) is referred to as the “suffix.” The
representation uses ARB_REAL_TAG or ARB_INT_TAG on top of one quantum
containing the identifying suffix. Thus, @25 is 25 ARB_REAL_TAG, and @n10 is
10 ARB_INT_TAG.

The system also implements the following symbolic constants.

Constant

Type Value Tag

Boolean TRUE TRUE_TAG

Boolean FALSE FALSE_TAG

Finite T Pl_TAG

Finite e (base of the natural In) E_TAG

Finite i (V(-1) I_TAG

Transfinite -0 MINUS_INFINITY_TAG
Transfinite 0 PLUS_INFINITY_TAG
Transfinite | +co PLUS_OR_MINUS_INFINITY_TAG
Transfinite 0/0 (any real value) UNDEFINED_TAG

Table 15.5: Symbolic Constants

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 15: Expressions and The Expression Stack

167

15.2.5.

15.2.6.

Strings are represented as a STR_DATA_TAG on top of the string data, which is
delimited by a null character (0) on both ends. Thus, the string “hello” is
represented as O hello 0 STR_DATA_TAG. Since zero is also the value of
VAR_TAG, this representation looks much like a variable name. However,
variable names have a maximum length of eight characters and can contain only
valid name characters. Strings are not limited in length and can contain any
character except a null (0).

One-argume

nt Tags

Tokenized Polish representation makes no distinction between functional
expressions and operator expressions. Both are represented as an identifying
tag value on top of its argument(s). Many built-in functions require exactly one
argument, for example, sin(x), In(x), abs(x), etc. A few of the operators also
operate on exactly one operand, for example, -x, x!, x%, etc.

Expression Representation
-X X _VAR_TAG CHS_TAG (change sign)
n! N_VAR_TAG FACTORIAL_TAG
20% 20 1 NONNEGATIVE_INTEGER_TAG PERCENT_TAG
sin(x) X_VAR_TAG SIN_TAG
In(abc) VAR_TAG a b ¢ VAR_TAG LN_TAG
abs(In(x)) X_VAR_TAG LN_TAG ABS_TAG
Table 15.6: Examples of Single Argument Functions and Operators

Two-argument Tags

Many built-in functions require exactly two arguments, for example,
zeros(In(x),x), mod(a, b), nCr(m, n). Functions of two arguments are represented
as the corresponding function tag on top of the first argument on top of the
second argument.

Expression

Representation

zeros(In(x),x)

X_VAR_TAG X_VAR_TAG LN_TAG ZEROS_TAG

mod(a, b)

B_VAR_TAG A_VAR_TAG MOD_TAG

nCr(m, n)

N_VAR_TAG M_VAR_TAG COMB_TAG (combinations)

Table 15.7: Examples of Functions of Two Arguments

TI-89 / TI-92 Plus Developer Guide

Not for Distribution Beta Version January 26

, 2001

168 Chapter 15: Expressions and The Expression Stack

Many built-in operators also require exactly two operands, for example,
arithmetic operators, power operators, relational operators, logical operators, the
store operator and the with operator. The arithmetic operators +, -, *, /, .+, .-, .%,
./, and the store operator -, all place the first operand deepest, then the second
operand, and finally the corresponding tag on top.

Expression Representation

a+b A VAR _TAG B_VAR_TAG ADD_TAG

X .*y X_VAR_TAG Y_VAR_TAG DOT_MULT_TAG
M-z PI_TAG Z_VAR_TAG STORE_TAG

Table 15.8: Examples of Arithmetic Operations and the Store Operation

The remaining binary operators, the power operators * and .», the relational
operators =, /=, <, <=, >, and >=, the logical operators and, or, and xor, and the
with operator |, all place the tag on top of the first operand on top of the second
operand, just as the functions do.

Expression Representation

XNy Y_VAR_TAG X_VAR_TAG EXPONENTIATION_TAG
r>s S_VAR_TAG R_VAR_TAG GT_TAG

aorb B_VAR_TAG A_VAR_TAG OR_TAG

cld D_VAR_TAG C_VAR_TAG SUCH_THAT_TAG (with)

Table 15.9: Examples of Other Binary Operations

15.2.7. Tags That Take More Than Two or a
Variable Number of Arguments

The tokenized Polish representation of functions that take more than two
arguments is the function tag on top of a tail of arguments. A tail is a sequence of
expressions on top of an END_TAG. The first argument is at the top of the
sequence just below the function tag. The last argument is deepest in the
sequence just above the END_TAG. Thus, Z(m, m, 1, n) is represented as
END_TAG N_VAR_TAG 1 1 NONNEGATIVE_INTEGER_TAG M_VAR_TAG
M_VAR_TAG SUMMATION_TAG.

A tail is also used for functions that accept a variable number of arguments. For
example, the [function will accept 2, 3, or 4 arguments. Therefore, [(In(x), X) is
represented by END_TAG X_VAR_TAG X_VAR_TAG LN_TAG
INTEGRAL_TAG. [(sin(x), X, 0,) is represented by END_TAG PI_TAG 0
NONNEGATIVE_INTEGER_TAG X_VAR_TAG X_VAR_TAG SIN_TAG
INTEGRAL_TAG.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 15: Expressions and The Expression Stack 169

15.2.8.

15.2.9.

An empty tail is represented by simply an END_TAG. Thus, rand() is
represented by END_TAG RAND_TAG.

Lists and Matrices

Most of the functions and operators in the system will operate on lists of
expressions and matrices containing expressions. A list is represented as a
LIST_TAG on top of a tail of expressions. Thus, the empty list { } is represented
as END_TAG LIST_TAG. The list {a, 1, tan(x)} is represented by END_TAG

X _VAR_TAG TAN_TAG PI_TAG A_VAR_TAG LIST_TAG. None of the elements
of a list can be a list unless they all are equal length lists thus forming a matrix.

A matrix is represented as a list of lists. Each of the inner lists represents a row
of the matrix. For example, the matrix [a, b; c, d] is represented by END_TAG
END_TAG D_VAR_TAG C_VAR_TAG LIST_TAG END_TAG B_VAR_TAG
A_VAR_TAG LIST_TAG LIST_TAG. The lengths of the rows must be equal.
None of the elements of a row can be a list. The system neither generates nor
expects invalid list or matrix structures. They will cause unexpected system
behavior.

Primary, Secondary, and Command Tags

The tags discussed in the preceding sections are called primary tags. In each
case the single tag on top of the representation is all that is required to identify
that element. However, the Operating System provides more than 256 built-in
functions, operators, commands, programming constructs, and so on. Therefore,
some of the primary tags are used with additional one Quantum tag values to
provide additional identifiers.

The tag value SECONDARY_TAG is used with secondary tag values to provide
representation for additional functions and operators. For example, ORD_TAG
happens to have the same Quantum value as V_VAR_TAG, but a
SECONDARY_TAG on top of that Quantum value represents the ord() function
rather than the variable v.

Expression Representation

getKey() END_TAG GETKEY_TAG SECONDARY_TAG

#s S_VAR_TAG INDIRECTION_TAG SECONDARY_TAG
v» POL V_VAR_TAG TO_POLAR_TAG SECONDARY_TAG

Table 15.10: Secondary Tag Examples

Similarly, the primary tag value COMMAND_TAG is used on top of command tag
values to provide representation for elements of the TI-BASIC programming
language.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

170 Chapter 15: Expressions and The Expression Stack

Expression Representation

ClrHome CLRHOME_TAG COMMAND_TAG

DelVar x X_VAR_TAG DELVAR_TAG COMMAND_TAG

Disp a, b END_TAG B_VAR_TAG A_VAR_TAG DISP_TAG
COMMAND_TAG

Table 15.11: Command Tag Examples

15.2.10. User and Application Defined Functions and Programs

Both calculator users and application developers can provide new functions and
programs. References to them are all represented in the same way. The topmost
identifying tag is USER_FUN_TAG. Next comes a variable name representation
that specifies the name of the function or program. Finally comes a tail of
arguments. Thus, if a user or application defines a function f(x), then the function
reference f(0) is represented by END_TAG 0 NONNEGATIVE_INTEGER_TAG
F_VAR_TAG USER_FUN_TAG. If a user or application defines a program

pa(x, y, z), then the program reference pa(c, “dd”, -1) is represented by
END_TAG 1 1 NEGATIVE_INTEGER_TAG 0d d 0 STR_DATA_TAG
C_VAR_TAG VAR_TAG p a VAR_TAG USER_FUN_TAG.

15.3. External Versus Internal Tokenized Polish

The system actually uses two slightly different tokenized forms. The tokenizer
produces a form called external tokenized form, which has been described in the
previous sections. This form has individual tags for representing all of the
operators, functions, and commands provided by the system. This form allows for
all the different ways that expressions may be represented including multiple
representations of the same expression. For example, a/b and a* (b ~-1) are
different representations of the same expression.

The simplifier produces a form called internal tokenized form. The two primary
reasons for this second form are expression recognition and efficiency of
implementation. The simplifier must be able to recognize when expressions are
similar or the same. Thus, expressions are translated into a standard form using
fewer tags, allowing the simplifier to more easily recognize expressions that
combine or cancel. Fewer tags and a standardized form allow the implementation
of the simplifier to be smaller and faster.

The following tags only occur in external tokenized form. Simplification replaces
these tags with a standard internal form.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 15: Expressions and The Expression Stack 171

» CHS_TAG (change sign or negation) is replaced by a multiplication by minus
one. Thus, -x is replaced by -1 * x.

« SUBTRACT_TAG is replaced by addition of a negative operand. Thus, x - 2
is replaced by x + (-2). The expression x - y is replaced by x + (-1 * y).

» DIVIDE_TAG is replaced by multiplication by the denominator raised to the
minus one power. Thus, x /y is replaced by x * (y ~ -1).

 E_TAG, which represents the base e of the natural logarithms, is replaced by
the exponential function exp() represented by EXP_TAG. EXP_TAG is an
internal only tag and never occurs in the external tokenized form. Thus, e*x is
replaced by exp(x). When the symbol e occurs other than as a base for
exponentiation, it is replaced by exp(1). Thus, e + x is replaced by exp(1) + Xx.

» Hyperbolic function tags (SINH_TAG, COSH_TAG, TANH_TAG) are
replaced by the equivalent exponential expressions.
Sinh(x) is replaced by exp(x) * (1 /2) + exp(x) * (-1) * (-1 / 2).
Cosh(x) is replaced by exp(x) * (1 / 2) + exp(x) * (-1) * (1 / 2).
Tanh(X) is replaced by ((exp(x)) * 2 + 1) ~ (-1) * ((exp(x)) * 2 + (-1))

* LOG_TAG, which represents the base-ten logarithm function log(), is
replaced by the equivalent natural logarithm expression. Thus, log(x) is
replaced by In(x) * (In(10)*(-1)).

* SIN_TAG, COS_TAG, and TAN_TAG are replaced by equivalent
expressions using a two-argument tag called SIN2_TAG. SIN2_TAG is an
internal only tag that represents the function sin2(x, k) defined as sin(

x + (k * 1t/ 2)). Since cos() can be represented as a shifted sin(), and since
tan() can be represented as a ratio of sin() and cos(), sin2() is used to
represent them all. The representation is SIN2_TAG on top of the
representation of the first argument x on top of the representation of the shift
argument k. Thus, sin(x) becomes sin2(x, 0); cos(x) becomes sin2(x, 1);
tan(x) becomes sin2(x, 0) * sin2(x, 1)*(-1).

« |_TAG, which represents the imaginary number (V(-1)), is replaced by an
equivalent expression using a two-argument tag called IM_RE_TAG.
IM_RE_TAG is an internal only tag whose two arguments are the real and
imaginary parts of an expression. The real and imaginary parts must be real
values. Thus, the expression x + i * y tokenizes as X_VAR_TAG |_TAG
Y_VAR_TAG MULTIPLY_TAG ADD_TAG. Since the system assumes that
the variables x and y are real, the simplifier replaces this external form with
the internal form X_VAR_TAG Y_VAR_TAG IM_RE_TAG.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

172 Chapter 15: Expressions and The Expression Stack

« XOR_TAG, which represents the exclusive-or operator xor, is replaced by an
equivalent expression using the and operator and the or operator. Thus, a xor
b is replaced by not a and b or a and not b.

e The tags representing transformation functions, such as factor()
(FACTOR_TAG), expand() (EXPAND_TAG), and so on, never appear in the
internal tokenized form.

Calculator users prefer to see results in a more standard form, for example, x -y
rather than x + (-1 * y) and a / b rather than a * (b(-1)). Therefore, the system
provides a routine called replace_top_with_post_simplified to transform
internal tokenized form to external tokenized form. CHS_TAG,
SUBTRACT_TAG, DIVIDE_TAG, E_TAG, SINH_TAG, COSH_TAG,
TANH_TAG, SIN_TAG, COS_TAG, TAN_TAG, and |_TAG are restored where
they make the result more readable.

System routines typically accept only one tokenized form as input and produce
only one tokenized form as output. Applications must not pass external tokenized
form to a routine that expects internal tokenized form and must not pass internal
tokenized form to a routine that expects external tokenized form. The external
only tags listed above may cause an internal only routine to throw errors or may
cause unexpected behavior. Similarly, internal only tags such as EXP_TAG,
SIN2_TAG, and IM_RE_TAG will cause an external only routine to throw errors
or behave unexpectedly. Appendix A: System Routines describes many entry
points that operate on tokenized expressions. Each of the entry point
descriptions specifies the acceptable input form and the output form that is
returned.

15.4. Most Main Ordering and Internal Representations of
Exponentiation, Multiplication, and Addition

Another important aspect of internal tokenized form is ordering. When the
elements of an expression can be reordered, the simplifier does so using most
main ordering. Some of the aspects of most main ordering are:

* Single alphabetic variables are ordered r>s>t...>x>y>z>a>b...>p>q.

» Single alphabetic variables are more main than other variables. Thus, X is
more main than vy, but y is more main than xx.

» Single nonalphabetic variables and multicharacter variables are ordered by
ASCII sequence. Thus, z is more main than a, but aa is more main than zz.

» Variables are more main than symbolic constants such as 7t
* Symbolic constants are more main than numbers.

See the description of the system routine compare_expressions for more
information on most main ordering.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 15: Expressions and The Expression Stack 173

The internal representation of exponentiation depends primarily on the type of
exponent. If the exponent is a number, then the representation is an
EXPONENTIATION_TAG on top of the internal representation of the base on top
of the internal representation of the exponent. Thus, x * 2 is simplified to 2 1
NONNEGATIVE_INTEGER_TAG X _VAR_TAG EXPONENTIATION_TAG. The
one important exception occurs when the base is e. The symbol e raised to any
exponent, numeric or otherwise, is simplified to EXP_TAG on top of the
exponent. Thus, e~ 2 simplifies to 2 1 NONNEGATIVE_INTEGER_TAG
EXP_TAG, and e " x simplifies to X_VAR_TAG EXP_TAG.

The internal representation of any other base raised to any non-numeric
exponent uses the exponential (EXP_TAG) and natural logarithm (LN_TAG)
functions. For example, x "y is represented as exp(y * In(x)) which is
Y_VAR_TAG X_VAR_TAG LN_TAG MULTIPLY_TAG EXP_TAG. The only
exception is that 0 u is represented internally as an EXPONENTIATION_TAG
on top of a zero on top of the internal representation of expression u.

Since multiplication can be reordered, the simplifier orders products with the
most main factor highest and the least main factor lowest. Thus, x *y is
externally tokenized as X_VAR_TAG Y_VAR_TAG MULTIPLY_TAG. Then, the
simplifier reorders thisto Y_VAR_TAG X_VAR_TAG MULTIPLY_TAG, because
X is more main than y.

In internal form division is represented as a product with the denominator raised
to the minus one power. Thus, x / y is externally tokenized as X_VAR_TAG
Y_VAR_TAG DIVIDE_TAG. Then, the simplifier changes this to a product and
reorders it as 1 1 NEGATIVE_INTEGER_TAG Y_VAR_TAG
EXPONENTIATION_TAG X_VAR_TAG MULTIPLY_TAG.

Another important aspect of the internal representation of products is that the first
(most main) operand of a product is never a product. Thus, (a*b) * (c *d) is
externally tokenized as A_ VAR_TAG B_VAR_TAG MULTIPLY_TAG
C_VAR_TAG D_VAR_TAG MULTIPLY_TAG MULTIPLY_TAG due to the
parentheses used in the text. In this external form each of the operands of the
topmost MULTIPLY_TAG is also a product. The simplifier reorders this
expression so that the topmost operand of each MULTIPLY_TAG is not a
product. The result is D_VAR_TAG C_VAR_TAG MULTIPLY_TAG B_VAR_TAG
MULTIPLY_TAG A_VAR_TAG MULTIPLY_TAG.

The simplifier performs a similar process with addition. Since addition can be
reordered, the simplifier reorders sums with the most main term highest and the
least main term lowest. Subtraction is changed to a sum with the second operand
negated. Finally, the simplifier makes sure that the topmost operand of each
ADD_TAG is not a sum. Thus, a + b becomes B_ VAR_TAG A_VAR_TAG
ADD_TAG. The expression a - b becomes 1 1 NEGATIVE_INTEGER_TAG

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

174

Chapter 15: Expressions and The Expression Stack

15.5.

B_VAR_TAG MULTIPLY_TAG A _VAR_TAG ADD_TAG. The expression
(a+Db) + (c+d)becomes D VAR_TAG C_VAR_TAG ADD_TAG B_VAR_TAG
ADD_TAG A_VAR_TAG ADD_TAG.

The Expression Stack

The simplification of an expression usually requires intermediate operations,
such as the replacement of variables with their assigned values, or the
computation of partial results that are combined to form the final result. The
Operating System uses a generalized stack called an expression stack (estack)
to perform these operations. The tokenizer also produces the external tokenized
form on the estack (expression at the highest address).

The system allocates the estack in a fixed location as an array of Quantums. The
bottom of the stack is at the lowest address, and the stack grows toward higher
addresses. This stack is described as generalized because the system allows a
variety of operations on any expression on the stack, not just the top expression.

References to expressions on the estack are via pointers defined in the system
by the C declaration:

typedef Quantum * EStackindex;

This pointer type is used to point to tokenized expressions whether they are on
the estack or elsewhere in memory.

The system also defines a macro for accessing expressions via estack pointers.
The C declaration is:

#define ESTACK(i) (*(i))

The bottom of the estack is delimited by a global EStackindex called
bottom_estack . This pointer does not change and always points to an
END_OF_SEGMENT_TAG to denote the end of the stack. The topmost
occupied Quantum of the estack is accessed by a global EStackindex called
top_estack .

The system provides a variety of routines that perform operations on the estack.
Routines whose names begin with “push_" push something on the estack. For
example, push_parse_text pushes the external tokenized form of a text
expression onto the estack; push_quantum pushes a single Quantum value
onto the estack; and push_between pushes the data that resides between two
pointers onto the estack.

Routines whose names begin with “replace_" replace one or more expressions
that are on top of the stack with a new expression. For example,

replace_top2_with_sum replaces the top two expressions on the estack with
the sum of those two expressions; replace_top_with_reciprocal replaces the

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 15: Expressions and The Expression Stack 175

top expression with its reciprocal; and replace_top_with_post_simplified
replaces the top expression (assumed to be internal form) with its external
tokenized form.

Routines whose names begin with “is_" are used to get information about
expressions. They have no effect on the contents of the estack or the
expressions they inspect. However, sometimes they must perform some
temporary computation to determine the requested information. Under these
circumstances the estack may temporarily grow. For example, is_negative tests
whether an expression is negative; is_real tests whether an expression is real;
and, is_equivalent_to tests whether one expression is equivalent to another.

Routines whose names begin with “index_" or end with “_index” are used to
locate expressions or subexpressions. They also have no effect on the estack or
expressions. They simply return the EStackindex of the located expression. For
example, next_expression_index returns the index of the next expression
below the expression pointed to by its input argument; lead_factor_index

returns the index of the first factor of the multiplication pointed to by its input
argument; and, remaining_factors_index returns the index of the remaining
factors following the first factor of the multiplication pointed to by its input
argument.

See Appendix A: System Routines for a complete list of the system routines
that perform estack operations.

15.6. An Example of Working on the EStack

This section takes a simple C language programming example and works
through alternative implementations to show how the same operations can be
done using estack operations. We begin with a C language implementation of a
function to compute the future value of a lump sum present value given the periodic
interest rate and the number of periods. The formula for this computation is
future_value = present_value * (interest_rate + 1) » number_of periods.

C programming language example:

[* This function takes three BCD16 arguments.
pv = present value
ir = interest rate
np = number of periods
The function returns future value fv as a BCD16.
*/
BCD16 fv (BCD16 pv, BCD16 ir, BCD16 np)
{ return pv * pow(ir + 1.0, np);

}

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

176

Chapter 15: Expressions and The Expression Stack

15.6.1.

Estack Arguments and Results

Lets modify the future value function to accept its arguments as a tail on the
estack and return its result on the estack. This example continues to accept and
return only floating-point values. The changes use the following features.

» An Estackindex called arg is used to access each of the arguments in turn.

« BCD16 variables fv, pv, ir, and np are declared to receive the argument

values and perform the computation.

* The system function next_expression_index

argument to the next.

is used to step from each

« The system function estack to_float is used to copy the tagged floats from

the estack into the BCD16 variables.

e The system function push_Float is used to push the BCD16 result onto the

estack as a tagged float.

[* This function takes three tagged BCD16 arguments.
The arguments are required to be in a tail on top
of the expression stack in the following order.
pv = present value
ir = interest rate
np = number of periods
The function returns future value fv as a tagged
float on top of the expression stack.
*/
void fv (void)
{ EStackindex arg; [* argument pointer */
BCD16 fv, pv, ir, np; /* BCD16 variables */
[* point arg to the first argument in the tail */
arg = top_estack;
[* get the present value argument */
pv = estack_to_float (arg);
[* advance the argument pointer to the next argument */
arg = next_expression_index (arg);
[* get the interest rate argument */
ir = estack_to_float (arg);
[* advance the argument pointer to the next argument */
arg = next_expression_index (arg);
[* get the number of periods argument */
np = estack_to_float (arg);
[* perform the future value calculation */
fv = pv * pow (ir + 1.0, np);
* push the future value on the estack */
push_Float (fv);

TI-89 / TI-92 Plus Developer Guide Not for Distribution

Beta Version January 26, 2001

Chapter 15: Expressions and The Expression Stack 177

15.6.2.

Estack Calculations

Now lets modify the example to perform the calculation on the estack rather than
in BCD16 variables. This extension will be necessary if the function must handle
arguments other than floating-point numbers. If the arguments to a function can
be floats, rationals, symbolic constants, variables, expressions, or lists of any of
these, then the computations are best done on the estack. The changes use the
following features.

» EStackindexes are declared to point to the arguments and temporary results.
e The system function push_arg_plus_1 is used to add one to an argument.

« The system function push_exponentiate is used to raise a value to a power.
* The system function push_product is used to multiply two values.

» The system function delete_between is used to delete temporary results.

void fv (void)

{ EStackindex pv, ir, np, tmp; /* argument pointers */
[* point to the present value argument */
pv = top_estack;
[* point to the interest rate argument */
ir = next_expression_index (pv);
[* point to the number of periods argument */
np = next_expression_index (ir);
[* perform the future value calculation */
[* add 1 to the interest rate */
push_arg_plus_1 (ir);
[* point to the temporary result */
tmp = top_estack;
[* raise (ir + 1) to the np power */
push_exponentiate (tmp, np);
[* point to the temporary result */
tmp = top_estack;
[* multiply by the present value */
push_product (tmp, pv);
* now the future value is on top of the estack */
[* delete intermediate results */
delete_between (pv, tmp);

This version of the example is longer and more complicated than either of the
previous versions. Thus, an obvious question is “what has been gained?” The
answer is a great deal of power and flexibility. This latest version does not care
about the types of the arguments. If all of the arguments are rational numbers,
the result will be a rational number. If the arguments are symbolic, the result will
be symbolic. If the arguments are of valid but differing types, they will be
combined in an appropriate way. If the arguments are not valid for the specified
calculation, an appropriate error will be reported.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

178 Chapter 15: Expressions and The Expression Stack

15.7. Working With Lists

This section describes some of the routine ways of working with lists and tails. A
list is represented as a LIST_TAG on top of a tail. A tail is a sequence of
expressions on top of an END_TAG. For example, the list {a, 1, In(x)} takes the
tokenized form

END_TAG X_VAR_TAG LN_TAG 1 1 NONNEGATIVE_INTEGER_TAG
A_VAR_TAG LIST_TAG

where the END_TAG is at the lowest address and the LIST_TAG is at the
highest address.

The system routines that implement calculator functions understand and correctly
handle lists. For example, push_In automatically computes the natural logarithm
of each element of a list. push_sum automatically adds two lists, element by
element, and throws an appropriate error if the lists do not have the same
number of elements. push_negate changes the sign of each element of a list,
and so on. Thus, depending upon the operations involved, it is often possible to
write code that does not need to check whether its input arguments are lists. The
last future value function of the previous section is an example. Since each of the
called system routines understands lists, the resulting future value function
correctly handles lists.

Sometimes new code must be written to perform some new process on lists.
These new processes generally fall into two categories based on their result.
Either they create a new version of the list or they do not. The functions
mentioned in the previous paragraph create new lists from input lists. Here are
examples that do not create new lists. is_constant determines whether every

element of the list is a constant value and returns a Boolean result.
push_sumlist returns an expression that represents the sum of all the elements
of the list. push_dimension returns the number of elements in the list.

Functions that do not create new lists generally use a loop to walk through the
elements of the list. Here is a function that returns the number of elements in a
list.

unsigned short number_of_elements (EStackindex i)
{ unsigned short count = 0; /* initialize counter */
--i; /* move index from LIST_TAG to first list element */
while (END_TAG != ESTACK(i)) /* while not at end of list */
{ ++count; /*increment counter */
i = next_expression_index (i); /* step to next element */
}

return count;

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 15: Expressions and The Expression Stack 179

This function illustrates three key elements of a process that loops over the
elements of a list.

» Decrement the index to move it from the LIST_TAG to the first list element.
» Testfor END_TAG at the current location to determine when to stop.

» Use next_expression_index to advance the index through the elements of
the tail.

Here is another example that illustrates this pattern — a possible implementation
of push_sumlist .
void push_sumlist (EStackindex i)
{ pushO (); /* push a zero on the estack */

--i; * move index to first element of list */

while (END_TAG != ESTACK(i)) /* while not at end of list */

{ add_to_top (i); /* add current element to sum */

i = next_expression_index (i); /* step to next element */

}

}

Note that the three key elements are identical. The differences from the previous
example are in the initialization (push0), the operation (add_to_top), and the
completion (return value on the estack).

Looping is less applicable to procedures that create a new copy of a list. No two
elements of a list are necessarily the same size. A computed result is not
necessarily the same size as the corresponding input value. Therefore,
overwriting each element of a list with a newly computed element is not a
reasonable approach. Also looping operates on the list from the first element
(highest on the stack) down to the last element (lowest on the stack). If the
operation of the loop is to push a computed value based on each element, the
resulting new list is in reverse order. Another loop can be added simply to
reverse the order of the elements. However, this approach requires the additional
stack space to make another copy of the list and requires the additional time to
make the correctly ordered copy, and finally, delete the incorrectly ordered copy.

An alternative implementation for routines that make new copies of lists is to use
recursion. The following example represents a pattern that occurs frequently.
The key elements are:

e A main routine that calls a subroutine to operate on the tail of the list and then
pushes a LIST_TAG on top of the resulting tail to form the new list.

* A subroutine that recurs down to the END_TAG of the tail doing nothing on
the way and then pushes each newly computed value on the way out of the
recursion giving the resulting list in correct order.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

180

Chapter 15: Expressions and The Expression Stack

Here is a pair of functions that combine to compute the square root of each
element of a list.

void push_sqrt_list (EStackindex i)
{ I*iindexes a list */
push_sqrt_tail (i — 1u); /* compute the sqrt of the tail */
push_quantum (LIST_TAG); /* push a LIST_TAG on top */
}

void push_sqrt_tail (EStackindex i)
{ F*iindexes a tail.
Pushes a tail of the square roots of the elements. */
if (END_TAG == ESTACK (i)) /* if at the bottom of the tail */
push_quantum (END_TAG); /* push bottom of new tail */
else
{ [*recur to next element of tail */
push_sqrt_tail (next_expression_index (i));
/* on the way out, compute sqrt of each element */
push_sqrt (i);

The recursive alternative has the advantage of automatically creating the new list
in the correct order. The disadvantage is that recursion consumes more
hardware stack for the recursive stack frames. This approach makes a recursive
subroutine call, thereby using a stack frame for each element of the list, and
finally, the END_TAG that terminates the list.

The recursive pattern for computing a list result from a list input is so common
that the system includes a generalized procedure that provides the recursion.
The map_tail routine makes it unnecessary to write the recursive subroutine as
shown in the previous example. The first argument in map_tail is a pointer to a
function that pushes a single result value based on a single input value. Its
second argument is a tail of input values. It performs the recursion, applying the
specified function to each element of the tail. Thus, push_sqrt_list can be
implemented as follows, making push_sqrt_tail unnecessary.
void push_sqrt_list (EStackindex i)
{ I* apply sqrt function to the tail */

map_tail (push_sqrt, i — 1u);

[* push the LIST_TAG on top of the tail */

push_quantum (LIST_TAG);

}

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

181

16. Working with Numbers

16.1. Overview

This chapter describes the two separate number subsystems that are built into
the AMS Operating System — the rational system and the float system. The
numeric representations used by these systems are described in section

15.2.2. Numbers . Briefly, the rational system is an exact number system that
uses tagged integers and tagged fractions. The float system is an approximation
number system that uses BCD floating point numbers.

16.2. Rational System vs. Float System

The primary advantage of the rational system is no loss of precision. So long as
no operation overflows or underflows, rational results are exact. The primary
disadvantage of the rational system is that the representation size is not fixed. As
tagged integers increase in magnitude the size of the representation increases
accordingly. As the magnitudes of numerators and denominators increase, the
representation size of fractions grows as well. Indexes into arrays of rational
numbers cannot be directly computed. To reach a specific array element, the
code must “step over” each of the preceding elements. Thus, depending upon
the type of operations, the rational system can be slower than the float system.

The primary advantage of the float system is the fixed size of the presentation.
As a result the speed of operations is more predictable, and indexes into arrays
of float numbers can be directly computed. The primary disadvantage of the float
system is loss of precision. Since the representation size is fixed, float results
must be rounded or truncated to a fixed number of significant digits after each
operation. Thus, a float result is always assumed to be an approximation.

Loss of precision makes the float system less suitable than the rational system
for computer algebra, where many of the most powerful results depend upon the
ability to maintain exact intermediate results. The rational system is less suitable
when fast approximate results are desired, such as during graphing. Since the
TI-89 / TI-92 Plus calculators need both these capabilities, the Operating System
includes both types of numbers.

A natural question for any application is whether to focus on or force the use of
only one number system. For the most part the attitude of the Operating System
is “let the calculator user decide.” The system provides a mode setting, described
in the next section, that allows the calculator user to control this issue. There are
exceptions. For example, the graphing application and the statistical calculations
require the use of the floating-point system, and so, ignore the current mode
setting.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

182 Chapter 16: Working with Numbers

16.3. EXACT/APPROX/AUTO Modes

The EXACT/APPROX mode setting controls the way numbers are treated by the
computer algebra system. In simplest terms EXACT mode causes the simplifier
to convert float numbers to integers or fractions. APPROX mode causes the
simplifier to convert integers and fractions to float numbers. In AUTO mode the
simplifier does not alter the number types unless an operation must combine a
float number with a nonfloat number. When this combination occurs, the nonfloat
number is converted to a float number before they are combined.

Number conversions due to mode are performed by push_internal_simplify
when it encounters each number. Lower level routines in the computer algebra
assume that the enforcement of the mode setting has occurred before they are
called. Thus, if an application calls push_internal_simplify , push_simplify , or
push_simplify_statements to evaluate an expression, the numbers in the
expression will be handled according to the mode setting. However, if an
application directly calls lower level computer algebra routines with numeric
arguments, the mode setting will not be enforced.

For example, if the mode setting is EXACT, and an application passes the
expression 1.5 + 2 to push_internal_simplify , the result will be 7/2. The float
value 1.5 is automatically converted to 3/2. However, if the application passes
1.5 and 2 to the push_sum routine, the result will be 3.5. push_sum does not
enforce the mode setting, and the default action for combining floats and
nonfloats is to convert the nonfloat into a float.

To duplicate the computer algebra’s numeric behavior, an application has two
choices.

« Always enter the computer algebra simplifier through one of the three main
entry points (push_internal_simplify, push_simplify,
push_simplify_statements) . Thus, the mode setting will be enforced by
push_internal_simplify

« Take responsibility for checking the mode setting and when necessary,
applying the appropriate conversions to its numeric arguments before calling
lower level routines.

Finally, an application may decide to ignore the current mode setting and enforce
one of its own choosing. An example is the built-in graphing application. The
grapher saves the current mode setting, changes the mode setting to APPROX
while it is active, and restores the current mode setting when it finishes.

The current status of the EXACT/APPROX mode setting is maintained in the
global variable NG_control. The macros IS_ARITH_EXACT,
IS_ARITH_APPROX, and IS_ARITH_AUTO are used to test the status of the
mode. The macros SET_ARITH_EXACT, SET_ARITH_APPROX, and
SET_ARITH_AUTO are used to alter the mode setting.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 16: Working with Numbers 183

Here is a coding example from a system routine which must temporarily alter this
mode setting. Numeric integration (push_nint) requires that all evaluation be
done with float numbers. So, this routine saves the mode, changes it, and
restores it before returning.

void push_nint (EStackindex i, EStackindex vi, EStackindex j,
EStackindex k)
{

Access_AMS_Global_Variables;
CONTROL_BITS old_NG_control = NG_control;
SET_ARITH_APPROX;

[* apply the quadrature algorithm */

NG_control = old_NG_control;

}

16.4. Floating Point Numbers

Applications can work with float numbers on the estack or in C floating-point
variables. The compiler supports two forms of floating-point values as described
in Chapter 2 of the compiler documentation. The calculator implementation uses
the standard C type double. The symbols BCD16 and Float are also defined to
be double. BCD16 is the recommended type for declaring floating-point variables
in applications.

This type uses a 16-digit mantissa and provides more accuracy. Thus, BCD16
variables provide the best results when implementing iterative algorithms that
require a great deal of floating-point computation.

push_Float is the routine that converts a C floating-point value into a tagged
floating-point value on the expression stack. The 16-digit value is rounded to
14-digits, pushed onto the estack, and then a FLOAT_TAG is pushed on top.

BCD floating point supports floating point infinities. However, push_Float
converts these values to their symbolic equivalents. In other words, push_Float
converts a floating point plus infinity to PLUS_INFINITY_TAG, a floating point
minus infinity to MINUS_INFINITY_TAG, a floating point unsigned infinity to
PLUS OR_MINUS_INFINITY_TAG, and a floating point NAN to
UNDEFINED_TAG.

BCD floating point supports an exponent range from -16384 to 16383. Tagged
float exponents are limited to the calculator range of -999 to 999. push_Float
converts overflow values to the corresponding symbolic infinity and underflow
values to zero. Thus, while any tagged float can be moved into a C floating point
variable, not all C floating point values can be converted to tagged floats.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

184 Chapter 16: Working with Numbers

Tagged floating point values are the floats available externally to the users of the
calculators. TI BCD floating-point values (C floats) must be converted to tagged
floats before displaying or storing to a calculator variable, and all the special
floating-point values in the Tl BCD floating-point system such as infinity and NAN
(may also be referred to as undefined or invalid float) must be converted to the
symbolic equivalents before being made available to the user. All of this is
automatically handled by push_Float .

Occasionally an application developer may want to check for C float values not
valid in a tagged float without doing the actual push_Float conversion. For
example, an algorithm that has been written using Tl BCD floating-point values
may need to take different paths or throw an error based on whether the result of
a previous operation was infinity or undefined. Routines such as
is_float_transfinite andis_nan are available for this purpose. See Appendix A:
System Routines — Direct Floating Point Operations for more routines that
test for other special values. round14 can be used on any BCD16 value to round
the number of digits in the mantissa to 14. ck_valid_float rounds a BCD16 value
to 14 digits, underflows to O if the exponent is less than -999, and returns a
floating-point NAN if the original value is transfinite or the exponent is greater
than 999. If push_Float had been used, the floating-point transfinite values and
an exponent greater than 999 would have resulted in the symbolic equivalents on
the estack. However, the NAN allows the developer to continue with the
algorithm if desired but is_nan may be called directly after ck_valid_float to test
for the NAN instead.

Since tagged floats have 14 digit mantissas, sometimes a series of operations
performed with tagged floats may get a different result from the one obtained by
doing the same series using BCD16 floats which have 16 digit mantissas.
Usually the 16 digit mantissas result in greater accuracy and are preferred for
that reason but a developer may want to match the external result which the user
would see if he entered a particular expression on the command line, which
would cause it to be executed on the estack and therefore use tagged floats. The
BCD14 format is available for this purpose but it should be noted that a BCD16
value will not cast to a BCD14 value (i.e. there will still be 16 digits in the
mantissa after the cast), and an explicit round14 must be done in this case . Itis
recommended that tagged floats on the estack be used when trying to match
external user results and that BCD16 floats be used when greater accuracy is
desired.

See Appendix A: System Routines — Direct Floating Point Operations for
details on the system routines that operate on BCD16 (double) arguments. Most
of these routines compute and return a corresponding function value; for
example, sin, cos, tan, In, sqrt, etc. Others test for special values, for example,
is_float_infinity, is_float_positive_zero , etc. Some are conversion routines.
estack_number_to_Float is the primary routine for converting any tagged

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 16: Working with Numbers 185

16.5.

16.6.

number into a BCD16 float value. push_Float as previously described is the
primary routine for converting a BCD16 float value into a tagged float value on
the expression stack.

See Appendix B: Global Variables — Direct Floating Point Operations for
details on commonly used stored BCD16 values and how to access them. Also
see Appendix B: Global Variables — Math for a description of global
EStackindexes of stored floating point values.

Rational Numbers

The rational system operates on the expression stack. The range of tagged
integers is approximately from -10"614 to 107614, which is much larger than the
range of C integer variables. This is the opposite situation from the float system.
Any C integer can be converted to a tagged integer, but most tagged integers are
too large to fit in C integer variables. Also C does not support a “fraction” variable
type to correspond to tagged fractions.

The system provides some routines to convert between C integers and tagged
integers. push_long_to_integer , push_ulong_to_integer , and
push_ushort_to_integer provide the means to convert C integers to tagged
integers on the estack. estack_to_short and estack _to_ushort convert tagged
integers to C integers. See Appendix A: System Routines — EStack Utilities

for descriptions of these routines.

Since the float range is bigger than the rational range, rational overflows and
underflows quietly convert to float values. Clearly any rational value can be
converted to a corresponding float value, but some floats are outside the rational
range and cannot be converted to rational values. estack_number_to_Float is
the primary routine for converting rational values to floating-point values.
push_Float_to_rat is the primary routine for converting floating-point values to
rational values. See Appendix A: System Routines for descriptions of these
routines.

See Appendix B: Global Variables — Math for a description of global
EStackindexes of stored rational values.

EStack Arithmetic

Performing numeric operations on the expression stack is simple, because the
system routines understand all the tagged data types in the internal tokenized
form and how to operate on them appropriately. For example, to add two values,
simply pass the two values to the push_sum routine. push_sum understands
tagged integers, tagged fractions, tagged floats, and in fact, all algebraic data

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

186

Chapter 16: Working with Numbers

16.7.

types that can be added. The primary system routines for estack arithmetic are
push_sum , push_difference , push_product , push_ratio , and
push_exponentiate .

Rational values combine to form rational values unless the operation overflows or
underflows. Since the float range is larger than the rational range, rational
operations quietly overflow and underflow into float values.

Float values combine to form float values. Float operations overflow to the
correctly signed symbolic infinity.

Rational values combine with float values to form float values. The rational
values are converted to float values to facilitate these combinations.

In addition to the primary routines, the system provides some specialized
routines. replace_top2_with_sum |, replace_top2_with_difference ,
replace_top2_with_prod , replace_top2_with_ratio , and
replace_top2_with_pow perform the corresponding operation on the top two
entries on the expression stack. add_to_top , subtract_from_top , times_top ,
divide_top , and raise_to_top perform the corresponding operation with the top
entry on the estack and a specified input argument.

See Appendix A: System Routines — EStack Arithmetic for descriptions of
these and other routines for performing arithmetic operations on the expression
stack.

Complex Numbers

The representation of complex values is different in the external and internal
tokenized forms. The external tokenized form uses the |_TAG which represents
the imaginary number. So, 1 + 2i tokenizes into an expression involving tagged
integers, addition, multiplication, and the |_TAG. Since the |_TAG might appear
anywhere in a general expression, this representation makes it difficult to
recognize and operate on complex values.

The simplifier, via push_internal_simplify , converts complex values to internal
tokenized form which uses an IM_RE_TAG on top of the imaginary part on top of
the real part of the complex value. This form places the knowledge that the value
is complex at the top of the representation in the form of the IM_RE_TAG. This
change greatly facilitates recognizing and operating on complex values.

External tokenized values are only handled by push_internal_simplify , which
converts them to internal form, and by push_simplify_statements and
push_simplify , which use push_internal_simplify . Do not pass external
tokenized form to other evaluation/simplification routines. External tokenized
values are also handled by the display routines; for example,
display_statements , ParselDEXxpr , etc.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 16: Working with Numbers 187

Internal tokenized values are handled by all of the evaluation/simplification
routines. For example, push_sum , push_difference , push_product , and
push_ratio automatically handle complex arithmetic. push_abs computes the
magnitude of a complex value. push_phase computes the phase angle of a
complex value. push_sin , push_cos , push_tan , push_In , and so on, all
understand complex values in internal tokenized form and compute and return
the appropriate result in internal tokenized form. However, the display routines do
not take this form. Do not pass internal tokenized form to display_statements
ParselDExpr , etc. First, use replace_top_with_post_simplified to convert the
internal form to external form. Then the result can be handled by the display
routines.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

188 Chapter 16: Working with Numbers

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

189

17. Graphing

This chapter discusses the Graph application on the TI-89 / TI-92 Plus
calculators and how to interface with it.

17.1. The Graph Screen

The graph screen always has an odd number of pixels vertically and horizontally,
even if the window itself has an even number of pixels. In this case, the rightmost
column and/or the bottom row will not be used for graphing. The odd number of
pixels insures that there will always be a pixel in the center of the graph, which is
where the origin of the axis is with the default window settings. The Window
variable, xmin, corresponds to the value at the center of the leftmost pixel
column, while xmax is the center of the rightmost pixel column used for graphing.
ymin and ymax values correspond to the center of the pixels of the top and
bottom rows respectively. Ax and Ay are measured from the center of one pixel
to the center of the next and are computed when the graph screen is displayed. If
the Window variables or screen size has changed since the last time the graph
was displayed, Ax and Ay may not have been recomputed yet and may be
invalid.

Figure 17.1 shows the four pixels in the upper left corner of the graph screen and
the relationship between the x, y viewing window coordinates and the row,
column pixel coordinates. Some system routines and TI-BASIC calculator
commands use pixel values and others require viewing window coordinates. For
drawing objects such as lines, dots, and circles on the screen, the system
routines described in section 11.2. Windows are provided. These routines all
expect pixel coordinate inputs. Several system routines, listed in section

17.6. Available Graph System Routines and Global Variables , convert
between pixel and viewing window coordinates.

It is important to remember that when using system routines or calculator
commands with x, y viewing window coordinates as inputs that the outer half of
the first and last columns and the outer half of the top and bottom rows are
outside the viewing window. If the TI-BASIC command PtOn xmin-Ax/4, ymax is
entered on the Home screen, the upper left pixel on the graph screen will not be
set. Even though xmin-Ax/4 is within the range covered by the first column
(xmin-Ax/2 to xmin+Ax/2), it is less than xmin and therefore outside the viewing
window.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

190 Chapter 17: Graphing

Xmin
i AX
| | «— ymax + Ay/2
max - row 0 row 0
y - column 0 column 1
Ay — ymax - Ay/2
L row 1 row 1
column O column 1
« ymax - 3 x Ay/2
1 1 1
Xmin - Ax/2 xmin + Ax/2 Xmin + 3 % Ax/2

Figure 17.1: Upper Left Corner of Graph Screen

The graphing application has a backup screen associated with it. This enables
the Smart Graph feature to work. As functions are graphed, the pixels are set in
both the backup screen and on the display. If none of the formats, variables, or
functions used during graphing have changed since the last time the graph was
displayed, the backup screen can immediately be shown instead of regraphing all
the functions. A few things are only drawn to the display, not the backup screen,
such as axis labels which must be redrawn every time the graph is displayed,
and cursor coordinates which are constantly changing as the cursor moves.

17.2. Working with the Graph Application

If an app or ASM will be interacting with the Graph application, it is probably a
good idea to make sure the calculator is in one graph mode, by either setting
MO_OPT_SPLIT_SCREEN = D_MODE_SPLIT_FULL or
MO_OPT_NUMBER_OF_GRAPHS = D_MODE_GRAPHS _1 (see section

8.1. Mode Settings), or an error can be displayed if the calculator is not in the
correct mode when the app or ASM starts. In the default mode with one graph,
any reference to mode settings, format settings, Window variables and editor, Y=
functions and editor, Table, stat plots, or graph databases refers to the same
graph. In split screen mode, the applications in both windows refer to the same
graph, enabling you to see a graph and table, for example, generated from the
same data. If the user changes to two graph mode after an application is open, a
CM_MODE_CHANGE event message will be received by the app, allowing it to
take any desired action.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 17: Graphing 191

There is always an active graph, even when the Graph application is not
displayed. This allows access to the graph system variables and settings from
the Home screen or any other application. The graph system functions are stored
in the symbol table and appear on the VAR-LINK screen in the MAIN folder. All
other data needed by the active Graph application is stored in a GR_WIN_VARS
structure that is pointed to by the global variable gr_active . This struct also
contains pointers to the current Window variables, which are kept in system
memory, not part of the symbol table. The system routine VarStore must be
used to store to the graph system variables. This insures that the values are valid
and all necessary system flags will be set when appropriate. The following code
sample demonstrates how to define a graph function from an app or ASM and
shows an example of storing to the Window variables:

EStackindex volatile old_top = top_estack;
EStacklndex name;
UCHAR buf[25];

TRY

I* buf = "Define y1(x)=x" */

memset(buf, 0, 25);

strcat((char *) buf, (const char *) XR_stringPtr(XR_DefineB));
strcat((char *) buf, (const char *) "y1(x)=x");

[* Execute buf to define graph function y1(x) */
push_quantum(END_OF_SEGMENT_TAG);
push_parse_text(buf);
push_simplify_statements(top_estack);

/* store -10 to xmin */

push_parse_text((UCHAR *) XR_stringPtr(XR_XMIN_STR));
name = top_estack;

push_Float(-10.0);

VarStore((BYTE *)name, STOF_ESI, 0, top_estack);

/* OK to access system variables directly, but not store. */
if((gr_active->rngp)[GR_XMAX] < 0.0)
{ [* if xmax is negative, make it 10.0 instead */

push_parse_text((UCHAR *) XR_stringPtr(XR_XMAX_STR));

name = top_estack;

push_Float(10.0);

VarStore((BYTE *)name, STOF_ESI, 0, top_estack); /* xmax=10 */
}

top_estack = old_top; /* restore top_estack */
ONERR

top_estack = old_top; /* restore top_estack */
PASS,;

ENDTRY

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

192 Chapter 17: Graphing

17.3. Two Graph Mode

If the app or ASM may be executing when the calculator is in two graph mode
and needs to interact with the Graph application, graphing system variables or
graph system functions, or any graph related application (Window Editor,

Y= Editor, or Table), it must be aware of how two graph mode works. In two
graph mode (split screen selected and Number of Graphs = 2 on the MODE
screen) two independent graphs can be shown at the same time. The graph
mode for each is set separately. Other settings on the MODE screen are global
and apply to both graphs, such as Current Folder, Angle mode and Complex
Format. Stat plot definitions and graph functions are also global although
different functions and stat plots can be selected for each graph.

In two graph mode, any graph related application or reference to graphing
system variables or graph system functions always refers to the graph
corresponding to the active split screen window. In the top or left split
(AP_SIDE_A), this will always be Graph 1. Graph 2 is always in the bottom or
right split (AP_SIDE_B). A calculator user keeps track of this visually, with the
active graph number and its mode both shown in the status line which gets
updated as the user switches from one window to the other. Graph 1 and

Graph 2 can both be different graph modes or they can have the same mode.
When they have the same mode, the function definitions and styles are shared (if
the Y= Editor is displayed in both windows, they show the same function
definitions), but different functions can be selected to be plotted in each screen.
The Smart Graph feature still applies to each graph individually as much as
possible so changing a function that is only graphed on one screen does not
cause the other screen to also regraph. The Window variables, graph format
settings, and table editors are completely independent for each graph, even
when both have the same graph mode. If a graph is in one window and a table is
in the other, one is using Graph 1 data and the other is using Graph 2 data. Two
applications generated from the same set of graph data cannot be shown at the
same time in two graph mode.

System apps and routines, including VarStore , access all graph related data
through the global variables gr_active and gr_other . gr_active is a pointer to a
GR_WIN_VARS struct containing all the information for the active graph.
gr_other points to the information for the second graph in two graph mode. As
the calculator user switches between the two windows in two graph mode, the
pointers in gr_active and gr_other are swapped so that gr_active is always
referring to the active graph. An app or ASM will be referencing graph related
data that corresponds to whichever window is active when the app or ASM is
executing. This means that the first time your app is opened, gr_active may be
referring to Graph 1, and if it is opened again, it may be referring to Graph 2,
depending on which window the app happens to be opened in. Although the user
refers to Graph 1 and Graph 2 to distinguish between the two graphs, internally
an app or ASM is usually not aware whether it is working with Graph 1 or 2 since

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 17: Graphing 193

17.4.

gr_active and gr_other can point to either. An app should also be aware that a
user can change graph modes or even change to one graph mode while the app
is open, which may cause the app to suddenly start referencing the other graph.
If any MODE settings are changed while the app is open, a
CM_MODE_CHANGE event message will be sent to the app (see section

8.1. Mode Settings). An ASM can change which window is active, allowing it to
choose Graph 1 or Graph 2 if desired.

When the calculator is returned to one graph mode, the graph that is kept as the
current graph will be the one corresponding to the active split screen at that time.
If the top or left split is the active window, Graph 1 will be the current active
graph. If the bottom or right split is the active window, Graph 2 will be the current
graph. The data for the graph that is not current is not lost, however. If the
graphs were different modes, selecting the mode of the other graph will restore
that graph as the current active graph. If both graphs were the same mode, all
the data is saved but can only be viewed again by going back into two graph
mode and setting both graphs to the same mode again. The graph formats and
window settings for the second graph will be the same ones that were there
before. Since the functions are shared, they will contain the current definitions. If
the previous definitions are desired, a graph database should be created before
leaving two graph mode.

Graphing Functions

Each variable in the symbol table has two graph reference flags, one for the
graph associated with gr_active and the other for the graph associated with
gr_other . Before starting a graph, the gr_active graph reference flags and graph
backup screen are cleared and the graph in progress flag is set
(gr_flags.gr_in_progress). While the graph in progress flag is set, the graph
reference flag for every variable accessed will be set. The graph in progress flag
is reset when the graph is stopped for any reason, whether it is complete or not.
The dirty flag (gr_active->gr_win_flags & GR_DIRTY) is used to tell the system
that the graph must be regraphed the next time it is displayed. It is set if the
graph is interrupted for any reason, leaving an incomplete graph on the screen,
so the next time the graph screen is displayed another regraph will occur. When
the graph is complete and error-free, the dirty flag is reset. These flags are the
basis for the Smart Graph feature. Any time a variable is changed, the graph
reference flags are checked. If either is set, the dirty flag for the appropriate
graph (gr_active or gr_other or both) will be set, triggering a regraph the next
time that graph is displayed. Many other things can also cause the dirty flag to be
set, such as selecting a new split setting, changing the angle mode, changing
any of the Window variables, changing a selected graph system function, etc.
Selecting an additional graph function or defining a new graph function (which
automatically selects it for graphing), does not set the dirty flag. When a new
function is added to the graph, the dirty flag and graph in progress flags operate

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

194 Chapter 17: Graphing

as described above. The only difference is that the backup screen and the graph
reference flags in the variables are not cleared first.

During graphing, each function is evaluated at every point that the trace cursor
will fall on naturally to insure that the cursor will always be directly on the function
when traced. To retain floating point accuracy when line clipping is necessary
and when computing the values to use for the independent variable in each
graph mode, the Window variables xmin, xmax, ymin, ymax, tmin, tmax, etc., are
limited to 12 significant digits in the mantissa, while Ax, Ay, tstep, etc. use all 14
significant digits available in a floating-point number. VarStore automatically
rounds values to 12 digits when storing to the min/max Window variables. The
first x value plotted in function mode graphing is always xmin. The last x value
will either be xmax or, if no trace point falls on xmax due to the value of xres, the
first xres increment greater than xmax insuring that the graph of the function
does not end before the edge of the screen. In the modes with an independent
variable other than x, the first value is tmin, 8min, etc., and the final value is the
last computed value for the independent variable that does not go beyond tmax,
Bmax, etc.

Each segment of the graph is drawn as the functions are evaluated at every
computed value of the independent variable. Either or both of the end-points of
any segment may be outside the viewing window, so that line clipping is required.
Line clipping involves interpolating using the given end-points and the viewing
window variables. The system routine GrLineFlt performs all necessary clipping
based on the Window variables, while drawing the line segment in the specified
style.

Most errors encountered while graphing will cause the graph to stop, leaving the
dirty flag set so the graph will be regraphed the next time it is displayed.
However, the errors FIRST_OVERFLOW, FIRST_ZERO_DIVIDE,
FIRST_DOMAIN_ERR, ER_SINGULARMAT, and FIRST_UNREAL_ERR are
ignored while graphing, merely causing the point where the error occurred to be
skipped. The function is evaluated as usual at the next value of the independent
variable and the dirty flag is not set.

17.5. Graph Application Memory Usage

In the RAM area set aside for system use, memory is permanently reserved for
two GR_WIN_VARS structs, two sets of Window variables and graph format
settings for all six graph modes, and two sets of table variables among other
things, to insure that all data is available for two graph mode. During system
initialization, the gr_active graph window is opened (although not displayed
since the Home screen is shown at first) and its backup screen is created. The
backup screen for this graph window is always large enough for a full screen
graph, even if the calculator is later put into split screen mode.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 17: Graphing 195

When two graph mode is entered, memory for another backup graph screen is
reserved. This one is the size of the largest window allowed in any split screen
setting. If there is not enough heap available, a memory error will be displayed.
The calculator will be in two graph mode but a memory error will be shown every
time the Graph application is selected for Graph 2. This does not affect the other
graph related applications for Graph 2 or anything in Graph 1. The Table,

Y= Editor, and Window editor for Graph 2 are all still available. Graph databases
can still be opened or created. To be able to show the Graph application for
Graph 2, the calculator must be returned to one graph mode and enough
variables must be deleted or archived to make room for the backup screen
before re-entering two graph mode.

The Graph application also uses lots of temporary memory while graphing.
Anytime a user-defined function or program is executed, a temporary folder is
created for the local variables. During graphing, the same folder is used for all
the graph functions so that time is not wasted by constantly creating and deleting
the temporary folder for each separate function. Many arrays of data are needed
for 3D graphs, and sequence mode and differential equation mode both need to
save lists of previously computed values. In addition, functions created by the
Graph or Table commands are stored in another temporary folder which is
deleted by executing the ClrGraph command or activating the Y= Editor
application.

17.6. Available Graph System Routines and Global Variables

Any TI-BASIC graph command not specifically listed here can be accessed by
entering the command as a string and executing it as described in section
8.4. Interfacing with TI-BASIC

Graph Global Variables:

gr_active — Pointer to the GR_WIN_VARS structure containing graph
information for the active graph.

gr_other — Pointer to the GR_WIN_VARS structure containing graph
information for the nonactive graph in two graph mode.

or_flags — Structure containing flags used by the Graph application.

Graph System Routines:

CkvalidDelta — Verify that Ax, Ay, or the step value of the
independent graph variable has a valid exponent.

cmd_clrdraw — Calculator command ClrDraw.

cmd_clrgraph — Calculator command ClrGraph.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

196

Chapter 17: Graphing

cmd_rclgdb
cmd_stogdb

CptDeltax

CptDeltay

CptFuncX

Cptindep

EQU_select

EQU_setStyle

FindFunc

FindGrFunc

gr_Cptindepinc

gr_delete_fldpic
gr_DispLabels

gr_xres_pixel

GraphActivate
GrAxes

GrClipLine

GrLineFlt

Calculator command RclIGDB.
Calculator command StoGDB.

Compute graph system variable Ax for the current
active graph.

Compute graph system variable Ay for the current
active graph.

Compute the x value based on the current Window
variables for a specified pixel.

Compute the value of the independent variable for
the specified iteration.

Turn on/off/toggle the select flag for the specified
graph system function.

Set the style of the specified graph system
function.

Return the HSYM of the specified graph system
function if it is selected for graphing.

Return a pointer to the symbol table entry of the
specified graph system function.

Compute the iteration for the given value of the
independent variable.

Delete the graph system variable fldpic if it exists.
Draw the graph axis labels on the graph screen.

Find the first pixel number that is a multiple of the
graph system variable xres and is greater than or
equal to the given pixel number.

Activate the Graph application if not already active.
Draw the axes for the specified graph.

Clip the end-points of the specified line if
necessary based on the current Window variables.

Draw the specified line, using the given style, on
the current graph screen.

TI-89 / TI-92 Plus Developer Guide

Not for Distribution

Beta Version January 26, 2001

Chapter 17: Graphing

197

GT_Regraph
GT_Regraph_if _neccy
StepCk

XCvtFtoP

XCvtPtoF

YCvtFtoP

YCvtPtoF

Force a regraph of the current graph.
Regraph the current graph if necessary.

Verify that the step value of the independent
variable for polar or parametric mode is valid.

Convert the given floating point x coordinate to a
pixel column number based on the specified
Window variables.

Convert the given pixel column number to the
corresponding floating point x coordinate at the
center of that column, based on the specified
Window variables.

Convert the given floating point y coordinate to a
pixel row number based on the specified Window
variables.

Convert the given pixel row number to the
corresponding floating point y coordinate at the
center of that row, based on the specified Window
variables.

TI-89 / TI-92 Plus Developer Guide

Not for Distribution Beta Version January 26, 2001

198 Chapter 17: Graphing

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

199

18. TI FLASH Studio (IDE) Overview

18.1. Introduction

Tl FLASH Studio™ is a development tool that uses an Integrated Development
Environment (IDE) to give the user a familiar Windows interface. The

Tl FLASH Studio provides the capability to simulate the TI-89 / TI-92 Plus
calculator on the PC to allow application development and debugging. The

Tl FLASH Studio allows the developer to use a set of development tools under
the control of a single interface. The tools that are accessible through the control
of the IDE include a project manager, a language sensitive editor, compiler,
assembler, linker, and a simulator/debugger.

18.2. Development System

The IDE is for the development of Apps and assembly programs. The steps for
setting it up and getting started are presented in the following sections.

The IDE allows the user to:

» Create project files.

» Use templates to create projects.

» Create and edit source files.

» Build executable software for the simulator.

« Build downloadable software for developer calculators (Educational and
Professional versions).

* Integrate simulator/debugger functions.

18.2.1. Requirements

To properly run TI FLASH Studio, the development system PC must meet the
following requirements:

e IBM PC compatible Pentium-based machine.
* 32 MB of RAM (64 MB recommended).

* VGA video adapter.

» 35 MB of available hard drive space.

* Mouse or pointing device.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

200

Chapter 18: Tl FLASH Studio

Microsoft Windows 95, Windows 98, Windows ME or Windows NT 4.0.

Microsoft Virtual Machine (Microsoft VM) build 3319 or higher. Microsoft VM
can be downloaded from the Internet at
http://www.microsoft.com/java/download.htm.

Also, it is recommended that the development system contain the following
features:

Adobe Acrobat Reader 4.0. or higher.
A screen resolution of 800X600 or better.

Serial connection port and a TI-GRAPH LINK™ cable for communication with
the calculator.

150 MHz processor or faster.

18.2.2. Installation

Visit the Texas Instruments Developer’'s World to obtain the latest software.

1.
2.

Review the readme file to obtain updated information and requirements.

If the system does not contain Microsoft VM, download the Microsoft VM
from the Internet prior to installing TI FLASH Studio.

Download Tl FLASH Studio and save in a temporary location on the
development computer.

Install TI FLASH Studio by navigating and double clicking from the Windows
file manager or by using Start/Run menu and typing the filename that was
saved from the download (default is FSInst.EXE).

Follow the install procedure. The system may require a reboot prior to
starting the program.

Tl FLASH Studio is installed in the default directory found on the Start menu
under Programs/Tl FLASH Studio.

Caution: Sierra C™ Assembler tools are installed as a part of the setup in the C:/Sierra

directory. Any previously existing version of Sierra tools at this location will be
overwritten.

TI-89 / TI-92 Plus Developer Guide Not for Distribution Beta Version January 26, 2001

Chapter 18: TI FLASH Studio 201

18.2.3.

18.2.4.

18.2.5.

Compiler/Assembler/Linker

A compiler, assembler, and linker are installed with TI FLASH Studio. The user
can write software in C and create calculator programs and applications using
this compiler. The language tools are customized to provide code for the Tl
calculators and the license that must be accepted prohibits other use of the
language tools. More information on the language tool can be found in the
TI-89 / TI-92 Plus Sierra C Assembler Reference Manual.

For most development, the specific configuration of the language tools will be
transparent to the user. There are ways to change the command line switches as
discussed in the TI-89 / TI-92 Plus Sierra C Assembler Reference Manual.

Simulator/Debugger

The Tl FLASH Studio simulator/debugger allows the user to load and debug their
applications. TI-89 and TI-92 Plus calculators are simulated. TI FLASH Studio
supports applications written in C for the 68000 family of processors.

IDE Overview

Tl FLASH Studio provides the user with an intuitive, easy to