# ETUDE D'UN SYSTEME PLURITECHNIQUE

Motrice d'un convoyeur aérien

# CORRIGE

#### Analyse du système

Analyse globale

#### Question N • 1

(motrice avec conteneur destiné au laboratoire ou motrice sans conteneur ) et poste de chargement libre

Poste de chargement occupé ou motrice sans conteneur non destiné au laboratoire.

Analyse de la partie commande

#### Question N • 2

Le code hexadécimal est 7F L'information binaire sur P20 à P26 est 1111111

#### Question N°3

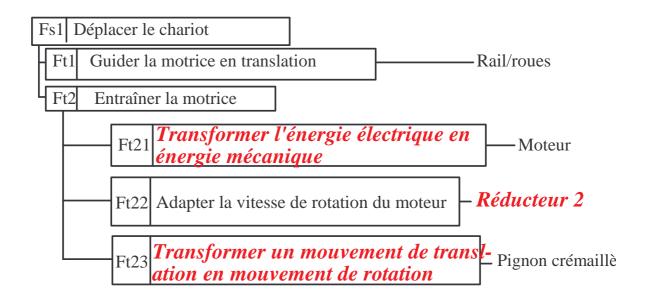
```
Début

Lire col

Si col = 1

Alors

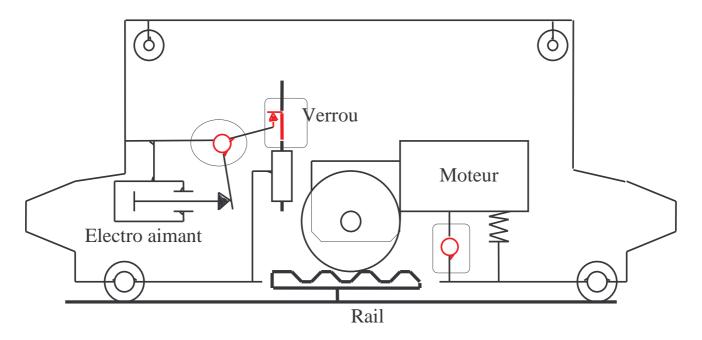
Val = 0


Attendre 10 s

Val = 1

Sinon Val = 1

Fin.
```


#### Question Nº 4



#### Question N<sup>o</sup> 5

- Liaison pivot
- Le constructeur a mis en place un ressort pour éviter le basculement du motoréducteur.

#### Question $N \cdot 5$



#### Calcul et vérification.

#### Question N<sup>o</sup> 7

#### Si P34 = 5V

- Le transistor T1 sera saturé et  $V_{CE} = V_{CEsat} = 0$ , 2 V (on admettra la réponse 0 V.), le transistor T2 sera alors bloqué car  $V_{BE}$  de T2 sera égale à OV . le transistor T 3 sera passant car sa base sera alimentée par le pont résistif R3 et R4.
- La bobine du relais Rel1sera donc alimentée, état du relais : travail

#### Si P34 = 0V

- Le transistor T1 sera bloqué et  $V_{CE} = V_{BE}$  de T2 , le transistor T2 sera alors saturé car sa base sera alimentée par R2. le transistor T 3 sera alors bloqué car  $V_{BE}$  de T3 = $V_{CE \, sat}$  de T2 sera égale à OV .
- La bobine du relais Rel1 ne sera plus alimentée, état du relais : *repos*

| P34 | Etat de T1         | Valeur de | Etat de T2       | Etat de T3        | Etat du     |
|-----|--------------------|-----------|------------------|-------------------|-------------|
| 134 | (bloqué ou saturé) | Vce1      | (bloqué ou       | (bloqué ou        | relais Rel1 |
|     |                    |           | saturé)          | saturé)           |             |
| 5V  | Saturé             | 0V        | Bloqué car       | Passant car       | Travail     |
|     |                    |           | VbeT2 = 0V       | courant de base   |             |
|     |                    |           |                  | existe (R3 et R4) |             |
| 0V  | Bloqué             | Vce = Vbe | Saturé car base  | Vbe de T3 = Vce   | Repos       |
|     |                    | de T2     | alimentée par R2 | de T2 = 0V        |             |

#### Question Nº 8

+ 24 V car le relais étant collé et il n'y a pas de collision alors le rail alimente les sorties Cav et Car.

0V Si le relais est au repos alors le rail ne peut alimenter Cav et Car et les résistances R7 et R8 imposent le 0V.

#### Question Nº 9

Rel 2 et Rel 3 sont aux repos alors Um = 0V.

Rel 2 est activé et Rel 3 est au repos alors Um = +24V.

Rel 3 est activé et Rel 2 est au repos alors Um = -24V.

#### Question Nº 10

Interrupteur normale fermé (capteur TOR)

#### Question N°11

Le Rel1 doit être activé et les capteurs anti-collision aux repos alors la bobine du relais 2 pourra être alimenté si P35 = 5V.

#### Question N°12

• La diode D2 est une dite de roue libre permettant d'éviter une surtension aux bornes du Vce de T4

$$Icsat = \frac{Valim - Vcesat}{Rel2} = 100 \text{ mA}$$

•

Ibsatmini = 
$$\frac{\text{Icsat}}{\beta \text{min}}$$
 = 1 mA

Ib réel=  $\frac{\text{Ve -Vbesat}}{\text{Ne -Vbesat}} = 1.95 \text{ mA}$ 

Ib réel est bien supérieur à Ibsat mini, le transistor T4 est donc bien saturé.

Ib réel est bien inférieur à Is max. le microcontrôleur peut donc alimenter cette interface.

## Question N°13

| Ordre venant<br>du<br>microcontrôleur |     | Etat des capteurs<br>anticollision avant et<br>arrière |                             | Etat des relais                     |         | Etat du moteur |         |        |
|---------------------------------------|-----|--------------------------------------------------------|-----------------------------|-------------------------------------|---------|----------------|---------|--------|
| P34                                   | P35 | P36                                                    | Capteur anticollision avant | Capteur<br>anticollision<br>arrière | Rel1    | Rel2           | Rel3    | Um     |
| 1                                     | 1   | 0                                                      | Repos                       | Repos                               | Travail | Travail        | Repos   | + 24 V |
| 1                                     | 0   | 1                                                      | Repos                       | Repos                               | Travail | Repos          | Travail | -24V   |
| 1                                     | 0   | 0                                                      | Repos                       | Repos                               | Travail | Repos          | Repos   | 0V     |
| 1                                     | 1   | 0                                                      | travail                     | Repos                               | Travail | Repos          | Repos   | 0V     |
| 0                                     | 1   | 0                                                      | Repos                       | Repos                               | Repos   | Repos          | Repos   | 0V     |

## Question Nº 14

Si le capteur est défaillant alors le microcontrôleur ne reçoit pas d'information collision. Le moteur reste donc alimenté est force sur la crémaillère.

#### Production d'une solution

### Question Nº 15

$$\omega = \frac{V}{R}$$
 or R = D/2 et D= mZ8. Donc  $\omega = \frac{50 \times 2}{3 \times 33} = 1,01 \text{ rad/s}$ 

$$C8 = \frac{P8}{\omega 8} = \frac{60}{1,01} = 59,4 \text{ Nm}$$

- Au sommet de la dent R = D/2 = (mZ8)/2 = 49,5 mm.
- Ft8 = C8/R = 59,4/0,0495 = 1200 N
- $Fr8 = Ft8tan20^{\circ} = 436,76 \text{ N}$

#### Question Nº 16

• 
$$| | T_{6 \rightarrow S} | | = 931,2 \text{ N}$$

$$\left\{ T_{6\rightarrow s} \right\} = \left\{ \begin{array}{ccc} 0 & 0 \\ -931.2 & 0 \\ 0 & 0 \end{array} \right\}_{R}$$

#### Question N<sup>o</sup> 17

• Voir dessin.

# BARÊME DE CORRECTION:

#### ANALYSE FONCTIONNELLE sur 36 points

| Question 1 | 8 pts (4+4)   |
|------------|---------------|
| Question 2 | 4 pts (2 + 2) |
| Question 3 | 6 pts (2+2+2) |
| Question 4 | 6 pts (2+2+2) |
| Question 5 | 9 pts (3+6)   |
| Question 6 | 3 pts         |
|            | Total sur 36  |

#### CALCULS DE VERIFICATION sur 42 points.

| Question 7         | 10 pts ( Pour p34 = 5 V 4 pts pour les trs + 1 pt pour le relais, pour p34 = 0 V 4 pts pour les trs + 1 pt pour le        |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|
| Organian 9         | relais)                                                                                                                   |
| Question 8         | 2 pts (1+1)                                                                                                               |
| <b>Question 9</b>  | 3 pts(1+1+1)                                                                                                              |
| Question 10        | 1 pt                                                                                                                      |
| Question 11        | 3 pts (1+1+1)                                                                                                             |
| Question 12        | 4 pts (0.5 +1 + 0.5 +1+0.5 +0.5)                                                                                          |
| <b>Question 13</b> | 4 pts par ligne (1 pt pour l'ordre du micro + 1 pt état des capteurs + 1 pt état des relais 1 état du moteur) soit 16 pts |
| <b>Question 14</b> | 3 pts (1.5 +1.5)                                                                                                          |
|                    | Total sur 42                                                                                                              |

#### PRODUCTION D'UNE SOLUTION sur 42 points

| Ouestion 15 | Sur 12 pts ( 4 pts + 4 pts + 4 pts )                                                                            |
|-------------|-----------------------------------------------------------------------------------------------------------------|
| Question 16 | Sur 12 points  Intensité de l'action du ressort : 6 pts Ecriture du torseur : 6 pts                             |
| V           | Sur 18 points  Choix de la longueur : 4 pts Choix du boulon : 4 pts Montage du boulon : 5 pts Dessin 2D : 5 pts |
|             | Total sur 42 pts                                                                                                |